866 resultados para Hematúria glomerular
Resumo:
Depending on age, duration of diabetes and glycaemic control, 20-40% of patients with type 2 diabetes will incur a moderate or severe deterioration of renal function. This will impact the choice of blood glucose-lowering therapy and require more frequent monitoring of both renal function and glycaemic control. Moderate renal impairment (glomerular filtration rate 30-<60 ml/min) requires consideration of dose reduction or treatment cessation for metformin, glucagon-like peptide-1 receptor agonists, some sulphonylureas and some dipeptidyl peptidase-4 inhibitors. At lower rates of glomerular filtration down to about 15 ml/min it may be appropriate to use a meglitinide, pioglitazone or certain sulphonylureas with careful consideration of dose and co-morbidities. Dipeptidyl peptidase-4 inhibitors can be used at reduced dose in patients with very low rates of glomerular filtration, and linagliptin can be used without dose reduction, and has been used in patients on dialysis. Insulin can be used at any stage of renal impairment, but the regimen and the dose must be suitably adjusted and accompanied by adequate monitoring. © The Author(s), 2012.
Resumo:
Glomerulosclerosis of any cause is characterized by loss of functional glomerular cells and deposition of excessive amounts of interstitial collagens including collagen I. We have previously reported that mesangial cell attachment to collagen I leads to upregulation of Hic-5 in vitro, which mediates mesangial cell apoptosis. Furthermore, glomerular Hic-5 expression was increased during the progression of experimental glomerulosclerosis. We hypothesized that reducing collagen I accumulation in glomerulosclerosis would in turn lower Hic-5 expression, reducing mesangial cell apoptosis, and thus maintaining glomerular integrity. We examined archive renal tissue from rats undergoing experimental diabetic glomerulosclerosis, treated with the transglutaminase-2 inhibitor NTU281. Untreated animals exhibited increased glomerular collagen I accumulation, associated with increased glomerular Hic-5 expression, apoptosis, and mesangial myofibroblast transdifferentiation characterized by a-smooth muscle actin (a-SMA) expression. NTU281 treatment reduced glomerular collagen I accumulation, Hic-5 and a-SMA expression, and apoptosis. Proteinurea and serum creatinine levels were significantly reduced in animals with reduced Hic-5 expression. In vitro studies of Hic-5 knockdown or overexpression show that mesangial cell apoptosis and expression of both a-SMA and collagen I are Hic-5 dependent. Together, these data suggest that there exists, in vitro and in vivo, a positive feedback loop whereby increased levels of collagen I lead to increased mesangial Hic-5 expression favoring not only increased apoptosis, but also mesangial myofibroblast transdifferentiation and increased collagen I expression. Prevention of collagen I accumulation interrupts this Hic-5-dependent positive feedback loop, preserving glomerular architecture, cellular phenotype, and function. © 2013 USCAP, Inc All rights reserved.
Resumo:
The two main sodium-glucose cotransporters (SGLTs), SGLT1 and SGLT2, provide new therapeutic targets to reduce hyperglycaemia in patients with diabetes. SGLT1 enables the small intestine to absorb glucose and contributes to the reabsorption of glucose filtered by the kidney. SGLT2 is responsible for reabsorption of most of the glucose filtered by the kidney. Inhibitors with varying specificities for these transporters (eg, dapagliflozin, canagliflozin, and empagliflozin) can slow the rate of intestinal glucose absorption and increase the renal elimination of glucose into the urine. Results of randomised clinical trials have shown the blood glucose-lowering efficacy of SGLT inhibitors in type 2 diabetes when administered as monotherapy or in addition to other glucose-lowering therapies including insulin. Increased renal glucose elimination also assists weight loss and could help to reduce blood pressure. Effective SGLT2 inhibition needs adequate glomerular filtration and might increase risk of urinary tract and genital infection, and excessive inhibition of SGLT1 can cause gastro-intestinal symptoms. However, the insulin-independent mechanism of action of SGLT inhibitors seems to offer durable glucose-lowering efficacy with low risk of clinically significant hypoglycaemia at any stage in the natural history of type 2 diabetes. SGLT inhibition might also be considered in conjunction with insulin therapy in type 1 diabetes. © 2013 Elsevier Ltd.
Resumo:
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT • Currently tacrolimus is the mainstay of immunosuppression for most children undergoing liver transplantation (LT). • The clinical use of this agent, however, is complicated by its various adverse effects (mainly nephrotoxicity), its narrow therapeutic-index and considerable pharmacokinetic variability. • The low and variable oral bioavailability of tacrolimus is thought to result from the action of the multidrug efflux-pump P-glycoprotein, encoded by the ABCB1 gene. WHAT THIS STUDY ADDS • A significant association between ABCB1 genetic polymorphisms and tacrolimus-associated nephrotoxicity in paediatric patients following LT is reported for the first time. Genotyping such polymorphisms may have the potential to individualize better initial tacrolimus therapy and enhance drug safety. • The long-term effect of ABCB1 polymorphisms on tacrolimus trough concentrations were investigated up to 5 years post-transplantation. A significant effect of intestinal P-glycoprotein genotypes on tacrolimus pharmacokinetics was found at 3 and 4 years post-transplantation suggesting that the effect is maintained long term. AIMS - The aim of this study was to investigate the influence of genetic polymorphisms in ABCB1 on the incidence of nephrotoxicity and tacrolimus dosage-requirements in paediatric patients following liver transplantation. METHODS - Fifty-one paediatric liver transplant recipients receiving tacrolimus were genotyped for ABCB1 C1236>T, G2677>T and C3435>T polymorphisms. Dose-adjusted tacrolimus trough concentrations and estimated glomerular filtration rates (EGFR) indicative of renal toxicity were determined and correlated with the corresponding genotypes. RESULTS - The present study revealed a higher incidence of the ABCB1 variant-alleles examined among patients with renal dysfunction (≥30% reduction in EGFR) at 6 months post-transplantation (1236T allele: 63.3% vs 37.5% in controls, P= 0.019; 2677T allele: 63.3% vs. 35.9%, p = 0.012; 3435T allele: 60% vs. 39.1%, P= 0.057). Carriers of the G2677->T variant allele also had a significant reduction (%) in EGFR at 12 months post-transplant (mean difference = 22.6%; P= 0.031). Haplotype analysis showed a significant association between T-T-T haplotypes and an increased incidence of nephrotoxicity at 6 months post-transplantation (haplotype-frequency = 52.9% in nephrotoxic patients vs 29.4% in controls; P= 0.029). Furthermore, G2677->T and C3435->T polymorphisms and T-T-T haplotypes were significantly correlated with higher tacrolimus dose-adjusted pre-dose concentrations at various time points examined long after drug initiation. CONCLUSIONS - These findings suggest that ABCB1 polymorphisms in the native intestine significantly influence tacrolimus dosage-requirement in the stable phase after transplantation. In addition, ABCB1 polymorphisms in paediatric liver transplant recipients may predispose them to nephrotoxicity over the first year post-transplantation. Genotyping future transplant recipients for ABCB1 polymorphisms, therefore, could have the potential to individualize better tacrolimus immunosuppressive therapy and enhance drug safety.
Resumo:
Environmental perturbations during early mammalian development can affect aspects of offspring growth and cardiovascular health. We have demonstrated previously that maternal gestational dietary protein restriction in mice significantly elevated adult offspring systolic blood pressure. Therefore, the present study investigates the key mechanisms of blood pressure regulation in these mice. Following mating, female MF-1 mice were assigned to either a normal-protein diet (NPD; 18% casein) or an isocaloric low-protein diet throughout gestation (LPD; 9% casein), or fed the LPD exclusively during the pre-implantation period (3.5d) before returning to the NPD for the remainder of gestation (Emb-LPD). All offspring received standard chow. At 22 weeks, isolated mesenteric arteries from LPD and Emb-LPD males displayed significantly attenuated vasodilatation to isoprenaline (P=0.04 and P=0.025, respectively), when compared with NPD arteries. At 28 weeks, stereological analysis of glomerular number in female left kidneys revealed no significant difference between the groups. Real-time RT-PCR analysis of type 1a angiotensin II receptor, Na /K ATPase transporter subunits and glucocorticoid receptor expression in male and female left kidneys revealed no significant differences between the groups. LPD females displayed elevated serum angiotensin-converting enzyme (ACE) activity (P=0.044), whilst Emb-LPD males had elevated lung ACE activity (P=0.001), when compared with NPD offspring. These data demonstrate that elevated offspring systolic blood pressure following maternal gestational protein undernutrition is associated with impaired arterial vasodilatation in male offspring, elevated serum and lung ACE activity in female and male offspring, respectively, but kidney glomerular number in females and kidney gene expression in male and female offspring appear unaffected. © 2010 The Authors.
Resumo:
Diabetic nephropathy (DN) is characterized by an early, progressive expansion and sclerosis of the glomerular mesangium leading to glomerulosclerosis. This is associated with parallel fibrosis of the renal interstitium. In experimental renal scarring, the protein cross-linking enzyme, tissue transglutaminase (tTg), is up-regulated and externalized causing an increase in its crosslink product, e-(γ-glutamyl)-lysine, in the extracellular space. This potentially contributes to the extracellular matrix (ECM) accumulation central to tissue fibrosis by increasing deposition and inhibiting breakdown. We investigated if a similar mechanism may contribute to the ECM expansion characteristic of DN using the rat streptozotocin model over 120 days. Whole kidney e-(γ-glutamyl)-lysine (HPLC analysis) was significantly increased from Day 90 (+337%) and peaked at Day 120 (+650%) (p <0.05). Immunofluorescence showed this increase to be predominantly extracellular in the peritubular interstitial space, but also in individual glomeruli. Total kidney transglutaminase (Tg) was not elevated. However, using a Tg in situ activity assay, increased Tg was detected in both the extracellular interstitial space and glomeruli by Day 60, with a maximal 53% increase at Day 120 (p <0.05). Using a specific anti-tTg antibody, immunohistochemistry showed a similar increase in extracellular enzyme in the interstitium and glomeruli. To biochemically characterize glomerular changes, glomeruli were isolated by selective sieving. In line with whole kidney measurement, there was an increase in glomerular e-(γ-glutamyl) lysine (+ 361%); however, in the glomeruli this was associated with increases in Tg activity (+228%) and tTg antigen by Western blotting (+215%). Importantly, the ratio of glomerular e-(γ-glutamyl) lysine to hydroxyproline increased by 2.2-fold. In DN, changes in the kidney result in increased translocation of tTg to the extracellular environment where high Ca2+ and low GTP levels allow its activation. In the tubulointerstitium this is independent of increased tTg production, but dependent in the glomerulus. This leads to excessive ECM cross-linking, contributing to the renal fibrosis characteristic of progressive DN.
Resumo:
IMPORTANCE: Metformin is widely viewed as the best initial pharmacological option to lower glucose concentrations in patients with type 2 diabetes mellitus. However, the drug is contraindicated in many individuals with impaired kidney function because of concerns of lactic acidosis. OBJECTIVE: To assess the risk of lactic acidosis associated with metformin use in individuals with impaired kidney function. EVIDENCE ACQUISITION: In July 2014, we searched the MEDLINE and Cochrane databases for English-language articles pertaining tometformin, kidney disease, and lactic acidosis in humans between 1950 and June 2014.We excluded reviews, letters, editorials, case reports, small case series, and manuscripts that did not directly pertain to the topic area or that met other exclusion criteria. Of an original 818 articles, 65 were included in this review, including pharmacokinetic/metabolic studies, large case series, retrospective studies, meta-analyses, and a clinical trial. RESULTS: Although metformin is renally cleared, drug levels generally remain within the therapeutic range and lactate concentrations are not substantially increased when used in patients with mild to moderate chronic kidney disease (estimated glomerular filtration rates, 30-60 mL/min per 1.73m2). The overall incidence of lactic acidosis in metformin users varies across studies from approximately 3 per 100 000 person-years to 10 per 100 000 person-years and is generally indistinguishable from the background rate in the overall population with diabetes. Data suggesting an increased risk of lactic acidosis in metformin-treated patients with chronic kidney disease are limited, and no randomized controlled trials have been conducted to test the safety ofmetformin in patients with significantly impaired kidney function. Population-based studies demonstrate that metformin may be prescribed counter to prevailing guidelines suggesting a renal risk in up to 1 in 4 patients with type 2 diabetes mellitus-use which, in most reports, has not been associated with increased rates of lactic acidosis. Observational studies suggest a potential benefit from metformin on macrovascular outcomes, even in patients with prevalent renal contraindications for its use. CONCLUSIONS AND RELEVANCE: Available evidence supports cautious expansion of metformin use in patients with mild to moderate chronic kidney disease, as defined by estimated glomerular filtration rate, with appropriate dosage reductions and careful follow-up of kidney function.
Resumo:
Purpose: To test the hypothesis of a significant relationship between systemic markers of renal and vascular function (processes linked to cardiovascular disease and its development) and retinal microvascular function in diabetes and/or cardiovascular disease.Methods: Ocular microcirculatory function was measured in 116 patients with diabetes and/or cardiovascular disease using static and continuous retinal vessel responses to three cycles of flickering light. Endothelial function was evaluated by von Willebrand factor (vWf), endothelial microparticles and soluble E selectin, renal function by serum creatinine, creatinine clearance and estimated glomerular filtration rate (eGFR). HbA1c was used as a control index.Results: Central retinal vein equivalence and venous maximum dilation to flicker were linked to HbA1c (both p<0.05). Arterial reaction time was linked to serum creatinine (p=0.036) and eGFR (p=0.039), venous reaction time was linked to creatinine clearance (p=0.018). Creatinine clearance and eGFR were linked to arterial maximum dilatation (p<0.001 and p=0.003 respectively) and the dilatation amplitude (p=0.038 and p=0.048 respectively) responses in the third flicker cycle. Of venous responses to the first flicker cycle, HbA1c was linked to the maximum dilation response (p=0.004) and dilatation amplitude (p=0.017), vWf was linked to the maximum constriction response (p=0.016), and creatinine clearance to the baseline diameter fluctuation (p=0.029). In the second flicker cycle, dilatation amplitude was linked to serum creatinine (p=0.022). Conclusions: Several retinal blood vessel responses to flickering light are linked to glycaemia and renal function, but only one index is linked to endothelial function. Renal function must be considered when interpreting retinal vessel responses.
Resumo:
Kidney transplantation is the best treatment for patients who have lost kidney function. Renal transplant patients require accurate immunosuppressive drugs to prevent rejection. In this process T helper cells of the immune system perform key role in the immune response to the graft, and recently the Th17 cells has been investigated by production of IL-17 potent proinflammatory cytokine whose role in the rejection has also been described. Increased of Th17 cell expression has an important association with the development of rejection in renal microenvironment, however the likely mechanism is not well understood. This study aimed to evaluate the Th17 response from the influence of the chemotactic axis CCR6/CCL20 and genetic variants in IL-17 and IL-17RA. We conducted a case-control study involving 148 patients transplanted at the University Hospital Onofre Lopes/UFRN in which assessed by immunohistochemistry protein expression of IL-17 and chemokines CCR6/CCL20 and by PCR-RFLP genetic variants in IL17A and IL17RA. Our results showed no influence of genetic polymorphisms on the outcome of the graft or the protein expression of IL-17. In renal graft microenvironment found several sources producing IL-17: tubular epithelial cells, glomerular cells, neutrophils and cell interstitial infiltration, in turn the expression of chemotactic axis CCR6/CCL20 was restricted to the tubular epithelium cells. There was a slight positive linear correlation between the presence of IL-17 and expression of chemotactic axis CCR6/CCL20 in the microenvironment of renal graft. Therefore, we believe that, combined with our results, further studies with increased "n" sample and greater control over the variables involved in obtaining the renal specimen, can determine more clearly the influence of chemotactic axis CCR6 / CCL20 and polymorphisms in cytokines related to Th17 profile on the control of this cell subtype response in rejection processes to renal allograft.
Resumo:
Metabolic syndrome (MS) is defined as a set of cardiovascular risk factors including obesity, systemic high blood pressure (SHBP), changes in glucose metabolism and dyslipidemia. The prevalence of MS in renal transplant recipients (RTR) ranges from 15% to 65%, increasing the risk of cardiovascular disease (CVD) and reducing renal allograft survival in the long term. The objectives of this study were to determine the prevalence and frequency of MS in renal transplant patients according to gender and time of transplantation and to evaluate renal function in patients with and without MS. Patients and Methods: Crosssectional study conducted from August 2012 to September 2013 involving 153 renal transplant recipients. MS was defined according to the National Cholesterol Education Program (NCEP) Adult Treatment Panel III (ATP III). The sample was divided into two groups: patients with metabolic syndrome (WMS patients) and patients without metabolic syndrome (WoMS patients) and according to gender. The WMS patients were stratified into quartiles according to the renal transplantation period (RTP), and variables related to MS were analyzed for both sexes. Results: MS was diagnosed in 58.1% of the studied population, specifically in MS was found 58.4% of men and 41.6% of women (P ˂ 0.05). The male and female with MS were 48.8 ± 11.6 years old vs. 47.1 ± 12.7 years old and the time of post transplantation was 76.1 ± 76.5 months vs. 84.7 ± 65.4 months, respectively (P >0,05). When we compared the sexes in the WMS group, systolic blood pressure (SBP) was higher in men (137.0 ± 18.1 vs. 128.9 ± 13.6 mmHg, P= 0.029), while the other components of MS did not exhibit significant differences. With respect to renal function, when we compared the sexes in the WMS group, the serum creatinine (sCr) was higher in men (1.73 ± 0.69 vs. 1.31 ± 0.47 mg/dL, P= 0.0012), while the urinary protein/creatinine ratio was higher in women (0.48 ± 0.69 vs. 0.37 ± 0.48 mg/dL, P=0.0150). We found no significant difference in the estimated glomerular filtration rate (eGFR) between WMS and WoMS patients for women and men (50.6 ± 19.1 vs. 50.1 ± 18.3 mL/min/1.73 m², P=0.909). We found a significant positive association between eGFR and HDL-c levels (r=0.3371; P=0.0145) for WMS men. The MS components showed no significant differences in RTP for different interquartile ranges, except for diastolic blood pressure (DBP) in women, where there was a significant variation among the quartiles evaluated (P=0.0009). Conclusion: the prevalence of MS was similar in the different quartiles in both sexes, in relation to time post TX. There was no significant difference in eGFR in patients WMS and WoMS, in both sexes. Concluding that the MS did not vary in relation to time post transplant.
Resumo:
Placenta growth factor (PlGF) deficient mice are fertile at a Mendelian ratio. Interestingly, low maternal plasma levels of PlGF are strongly associated with early onset of preeclampsia, a pregnancy hypertensive disorder characterised by high blood pressure, proteinuria and fetal growth restriction. PlGF is increasingly being recognised as an early diagnostic biomarker, but the physiological importance of PlGF in the pathogenesis of preeclampsia is unknown. We investigated whether the decreased levels of PlGF in pregnancy exacerbate the fetal growth restriction associated with preeclampsia in the presence of high sFlt-1 and the potential of hydrogen sulphide to ameliorate these effects. Pregnant PlGF−/− mice were injected with adenovirus encoding sFlt-1 (Ad-sFlt-1) at 1 × 109 pfu/ml at E10.5 and mean arterial blood pressure (MAP), biochemical and histological analysis of maternal kidney, placenta and embryos were assessed at the end of pregnancy. Ad-sFlt-1 significantly increased MAP and induced severe glomerular endotheliosis in PlGF−/− mice compared to wild-type animals. Soluble Flt-1 also significantly elevated albumin–creatinine ratio and increased levels of urinary kidney injury molecule-1, a marker for proximal tubule injury. Furthermore, sFlt-1 over expression increased fetal resorption rate in the PlGF−/− mice and promoted abnormal placental vascularisation. To determine whether placental PlGF is critical for preventing fetal growth restriction associated with preeclampsia, we generated haploinsufficient PlGF+/− placentas and embryos in dams and exposed to high sFlt-1 environment. These mothers showed reduced fetal resorption, gestational hypertension and proteinuria when compared to pregnant PlGF−/− mice. Furthermore, treatment with hydrogen sulphide-releasing agent, GYY4137, significantly reduced resorption, hypertension and proteinuria observed in Ad-sFlt-1 treated pregnant PlGF−/− mice. Our study shows that placental PlGF is a critical protective factor against the damaging effects of high sFlt-1 associated with preeclampsia and activation of the hydrogen sulphide pathway may rescue preeclampsia phenotypes even under low PlGF environment.
Resumo:
INTRODUCTION: Low circulating levels of placenta growth factor (PlGF) is strongly associated with the onset of preeclampsia, a maternal hypertensive disorder characterized by high blood pressure and proteinuria after 20 weeks of gestation. Although, PlGF-deficient mice are born healthy and fertile at a Mendelian ratio, the physiological importance of PlGF in the pathogenesis of preeclampsia is unclear. We hypothesised that decreased levels of PlGF in pregnancy exacerbates the fetal growth restriction associated with preeclampsia in the presence of high sFlt-1. METHODS: Pregnant PlGF-/- mice were injected with adenovirus encoding sFlt-1 (Ad-sFlt-1) at high (i) 1.5x109 pfu/ml and low (ii) 0.5x109 pfu/ml doses. Mean arterial blood pressure (MBP), biochemical and histological assessments of maternal kidney, placenta and embryos were performed. RESULTS: Ad-sFlt-1 significantly increased MBP and induced severe glomerular endotheliosis in PlGF-/- mice at E10.5 gestation compared to wild-type animals. High sFlt-1 also significantly elevated albumincreatinine ratio and increased levels of urinary kidney injury molecule-1, a marker for proximal tubule injury.At a high dose of sFlt-1, there was complete fetal resorption in the pregnant PlGF-/- mice, and even the lower dose of sFlt-1 induced severe fetal resorption and abnormal placental vascularization. Hydrogen sulphide-releasing agent, GYY4137, significantly reduced resorption, hypertension and proteinuria in Ad-sFlt-1 treated pregnant PlGF-/- mice. To determine if placental PlGF is critical for preventing fetal growth restriction associated with preeclampsia, we generated haploinsufficient PlGF+/- placentas and embryos were generated in wild-time dams and exposed to high sFlt-1 environment. This resulted in reduced fetal resorption, gestational hypertension and proteinuria when compared to pregnant PlGF-/- mice. CONCLUSIONS: Placental PlGF is a critical protective factor against the damaging effects of high sFlt-1 in preeclampsia and the hydrogen sulphide pathway may rescue preeclampsia phenotypes.
Resumo:
Diabetic kidney disease (DKD) is a devastating diabetes complication, with known heritability not fully revealed by previous genetics studies. We performed the largest genome-wide association study of type 1 DKD to date, in a 13-cohort consortium of 15,590 individuals of European ancestry genotyped on the Illumina HumanCoreExome Beadchip, which allows exploration of coding variation in addition to genomic markers.
As prior work has shown that different characterizations of the DKD phenotype highlight distinct genetic associations, we investigated a spectrum of DKD definitions based on proteinuria and renal function criteria. Controls were DKD-free after a minimum of 15 years diabetes duration; cases had diabetes for at least 10 years prior to DKD diagnosis. We also performed a quantitative trait analysis of estimated glomerular filtration rate in all participants.
Our top finding was a missense mutation in COL4A3, rs55703767 (Asp326Tyr); the minor allele is common in Europeans (20%) and East Asians (13%) but not Africans (2%). This SNP had a genome-wide significant association with traditionally defined DKD (macroalbuminuria or end-stage renal disease [ESRD], (OR= 0.79, P=1.9×10-9), and a suggestive association with macroalbuminuria (OR= 0.79, P=1.6×10-6) and ESRD (OR= 0.79, P=4.5×10-5) individually. Though its PolyPhen score is 0.3 (benign), this SNP has been implicated as a splice site disruptor.
The COL4A3 gene encodes the alpha 3 subunit of Type IV collagen, the major structural component of basement membranes. Pathogenic mutations in COL4A3 have been identified in thin basement membrane nephropathy, familial focal segmental glomerulosclerosis, and Alport syndrome. A proxy (r2=0.6) for rs55703767 had no significant associations in the CKDGen consortium, suggesting its pathogenicity occurs solely in the setting of hyperglycemia.
By significantly increasing sample size we have discovered a novel locus underlying DKD risk, paving the way for better understanding of pathology, prevention, and treatment.
Resumo:
Dabigatran is a direct thrombin inhibitor used as an alternative to warfarin for long term anticoagulation. Warfarin-related nephropathy is an increasingly recognized entity, but recent evidence suggests that dabigatran can cause a WRN-like syndrome. We describe a case of a biopsy-proven anticoagulant nephropathy related to dabigatran in a patient with IgA nephropathy and propose that, despite the base glomerular disease, acute kidney injury was due to tubular obstruction by red blood cells and heme-associated tubular injury, and through a mechanism involving inhibition of anticoagulation cascade and barrier abnormalities caused by molecular mechanisms.
Resumo:
Introdução: A correção cirúrgica do aneurisma da aorta abdominal (AAA), por Endovascular Aneurysm Repair (EVAR) ou cirurgia convencional (CC), pode agravar a função renal a curto prazo. Esta complicação, mais frequente nos doentes com insuficiência renal crónica (IRC), associa-se a pior prognóstico a longo prazo. O objetivo deste trabalho foi quantificar o agravamento da função renal após reparação do AAA em doentes com IRC prévia e demonstrar o consequente aumento da morbimortalidade. Métodos: Estudo retrospetivo em doentes com IRC estádios Chronic Kidney Disease 3-4 (TFGe 15-59ml/min), submetidos a correção eletiva de AAA entre fevereiro/2011 e fevereiro/2015 numa instituição terciária. Variáveis estudadas: idade, sexo, tipo de intervenção (convencional/EVAR) e estádio CKD. Endpoints: variação da creatinina e taxa de filtração glomerular com a cirurgia, complicações renais pós-operatórias, necessidade de reintervenção cirúrgica e mortalidade. A análise estatística foi realizada em SPSS. Resultados: Foram incluídos 71doentes. Quinze doentes (21%) foram operados por CC e 56 (78%) por EVAR. À data da intervenção, os doentes encontravam-se nos seguintes estádios da DRC: CKD 3 --- 65 (91%) e CKD 4 --- 6 (9%). A variac¸ão da TFG com a cirurgia foi −1,08±18,01mg/dl. Verificou-se IRC agudizada pós-operatória em 22 (31%) doentes e necessidade de diálise em 5 (7%). A mortalidade global foi 8,5%. Os doentes operados por EVAR tinham DRC mais avançada pré-operatoriamente, mas apresentaram menor agravamento da função renal. Variação TFG: EVAR 1,14±16,26ml/min vs. CC 9,40±22,11ml/min (p=0,022); variação creatinina: EVAR 0,17±1,03mg/dl vs. CC 0,81±1,47mg/dl (p=0,02). A agudização da IRC pós-operatória foi superior no grupo CC (53,3 vs. 28,6%; p=0,072), assim como a necessidade de diálise (20 vs. 3,6%, p=0,06). Os 6 doentes que faleceram (EVAR: 3; CC: 3) apresentaram maior agravamento da função renal (variação da creatinina: 1,41±1,63mg/dl vs. 0,20±1,07mg/dl, p=0,001; variação da TFG: −19,0±16,55ml/min; 0,57±17,34ml/min, p=0,007) e necessidade de diálise (50 vs. 3,1%, p=0,003). Conclusão: Os resultados demonstraram uma tendência para uma menor probabilidade de IRA, menor necessidade de diálise pós-operatória e menor mortalidade nos doentes tratados por EVAR. Contudo, o impacto da administração de contraste a médio/longo prazo, decorrente dos programas de vigilância pós-EVAR, deve ser considerado. Julgamos ser possível considerar que a realização de EVAR para o tratamento de doentes com AAA e IRC é um procedimento pelo menos tão seguro como a CC.