985 resultados para Heavy water reactors
Resumo:
Recent studies have shown that septic tank systems are a major source of groundwater pollution. Many public health workers feel that the most cri^cal aspect of the use of septic tanks as a means of sewage disposal is the contamination of private water wells with attendant human health hazards. In this study the movement and attenuation of septic tank effluents in a range of soil/overburden types and hydrogeological situations was investigated. The suitability of a number of chemical and biological tracer materials to monitor the movement of septic tank effluent constituents to groundwater sources was also examined. The investigation was divided into three separate but inteiTelated sections. In the first section of the study the movement of septic tank effluent from two soil treatment systems was investigated by direct measurements of soil nutrient concentrations and enteric bacterial numbers in the soil beneath and downgradient of the test systems. Two sites with different soil types and hydrogeological characteristics were used. The results indicated that the attenuation of the effluent in both of the treatment systems was incomplete. Migration of nitrate, ammonium, phosphate and fecal bacteria to a depth of 50 cm beneath the inverts of the distribution tiles was demonstrated on all sampling occasions. The lateral migration of the pollutants was less pronounced, although on occasions high nutrients levels and fecal bacterial numbers were detected at a lateral distance of 4.0 m downgradient of the test systems. There was evidence that the degree and extent of effluent migration was increased after periods of heavy or prolonged rainfall when the attenuating properties of the treatment systems were reduced as a result of saturation of the soil. The second part of the study examined the contamination of groundwaters downgradient of septic tank soil treatment systems. Three test sites were used in the investigation. The sites were chosen because of differences in the thicknesses and nature of the unsaturated zone available for effluent attenuation at each of the locations. A series of groundwater monitoring boreholes were installed downgradient of the test systems at each of the sites and these were sampled regularly to assess the efficiency of the overburden material in reducing the polluting potential of the wastewater. Effluent attenuation in the septic tank treatment systems was shown to be incomplete, resulting in chemical and microbiological contamination of the groundwaters downgradient of the systems. The nature and severity of groundwater contamination was dependent on the composition and thickness of the unsaturated zone and the extent of weathering in the underlying saturated bedrock. The movement of septic tank effluent through soil/overburdens to groundwater sources was investigated by adding a range of chemical and biological tracer materials to the three septic tank systems used in section two of the study. The results demonstrated that a single tracer type cannot be used to accurately monitor the movement of all effluent constituents through soils to groundwater. The combined use of lithium bromide and endospores of Bacillus globigii was found to give an accurate indication of the movement of both the chemical and biological effluent constituents.
Resumo:
Research was conducted to investigate the potential for ecologically engineering a sustainable wetland ecosystem over pyritic mine tailings to prevent the generation of acid mine drainage. Ecological engineering is technology with the primary goal being the creation of self-sustainable ecological systems. Work involved the design and construction of a pilot-scale wetland system comprising three wetland cells, each covering 100 m2. Approximately forty tonnes of pyritic mine tailings were deposited on the base of the first cell above a synthetic liner, covered with peat, flooded and planted with emergent wetland macrophytes Typha latifolia, Phragmites australis, and Juncus effusus. The second cell was constructed as a conventional free water surface wetland, planted identically, and used as a reference wetland/experimental control. Wetland monitoring to determine long-term sustainability focused on indicators of ecosystem health including ecological, hydrological, physico-chemical, geochemical, and biotic metrics. An integrated assessment was conducted that involved field ecology in addition to ecological risk assessment. The objective of the field ecology study was to use vegetative parameters as ecological indicators for documenting wetlands success or degradation. The goal of the risk assessment was to determine if heavy-metal contamination of the wetland sediments occurred through metal mobilisation from the underlying tailings, and to evaluate if subsequent water column chemistry and biotic metal concentrations were significantly correlated with adverse wetland ecosystem impacts. Data were used to assess heavy metal bioavailability within the system as a function of metal speciation in the wetland sediments. Results indicate hydrology is the most important variable in the design and establishment of the tailings wetland and suggest a wetland cover is an ecologically viable alternative for pyritic tailings which are feasible to flood. Ecological data indicate that in terms of species richness and diversity, the tailings-wetland was exhibiting the ecological characteristics of natural wetlands within two years. Ata indicate that pH and conductivity in the tailings-wetland were not adversely impacted by the acid-generating potential or sulphate concentration of the tailings substrate and its porewater. Similarly, no enhanced seasonal impacts from sulphate or metals in the water column, nor adverse impacts on the final water quality of the outflows, were detected. Mean total metal concentrations in the sediments of the tailings-wetland indicate no significant adverse mobilisation of metals into the peat substrate from the tailings. Correlation analyses indicate a general increase in sediment metal concentration in this wetland with increasing water depth and pH, and a corresponding decrease in the metal concentrations of the water column. Sediment extractions also showed enrichment of Cd, Fe, Pb and Zn in the oxidisable fraction (including sulphides and organic matter) of the tailings-wetland sediments. These data suggest that adsorption and coprecipitation of metals is occurring from the water column of the tailings wetland with organic material at increasing depths under reducing conditions. The long-term control of metal bioavailability in the tailings wetland will likely be related to the presence and continual build-up of organic carbon binding sites in the developing wetland above the tailings. Metal speciation including free-metal ion concentration and the impact of physico-chemical parameters particularly pH and organic matter, were investigated to assess ecotoxicological risk. Results indicate that potentially bioavailable metals (the sum of the exchangeable and reducible fractions) within the tailings wetland are similar to values cited for natural wetlands. Estimated free-metal ion concentrations calculated from geochemical regression models indicate lower free-metal ion concentrations of Cd in the tailings wetland than natural wetlands and slightly higher free-metal ion concentrations of Pb and Zn. Increased concentrations of metals in roots, rhizomes and stems of emergent macrophytes did not occur in the tailings wetland. Even though a substantial number of Typha latifolia plants were found rooting directly into tailings, elevated metals were not found in these plant tissues. Phragmites also did not exhibit elevated metal concentrations in any plant tissues. Typha and Phragmites populations appear to be exhibiting metal-tolerant behaviour. The chemistry of the water column and sediments in Silvermines wetland were also investigated and were much more indicative of a wetland system impacted by heavy metal contamination than the tailings-wetland. Mean Dc, Fe, Mn, Pb and Zn concentrations in the water column and sediments of Silvermines wetlands were substantially higher than in the pilot wetlands and closely approximate concentrations in these matrices contaminated with metals from mining. In addition, mean sulphate concentration in Silvermines wetland was substantially higher and is closer to sulphate concentrations in waters associated with mining. Potentially bioavailable metals were substantially elevated in Silvermines wetland in comparison to the pilot wetlands and higher than those calculated for natural rive sediments. However, Fe oxy-hydroxide concentrations in Silvermines sediments are also much higher than in the pilot wetlands and this significantly impacts the concentration of free-metal ions in the sediment porewater. The free-metal ion concentrations for Pb and Zn indicate that Silvermines wetland is retaining metals and acting as a treatment wetland for drainage emanating from Silvermines tailings dam.
Resumo:
text
Resumo:
plates
Resumo:
text
Resumo:
plates
Resumo:
Heavy duty Diesel engine, alternative fuels, EGR, exhaust emissions, HC, NOx, FSN
Resumo:
Passive trip system, reactor trip, runaway reaction, batch reactor