860 resultados para Heat Treatment - Effects


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

LiCoO2 powders were prepared by combustion synthesis, using metallic nitrates as the oxidant and metal sources and urea as fuel. A small amount of the LiCoO2 phase was obtained directly from the combustion reaction, however, a heat treatment was necessary for the phase crystallization. The heat treatment was performed at the temperature range from 400 up to 700 degreesC for 12 h. The powders were characterized by X-ray diffraction (XRD), X ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and specific surface area values were obtained by BET isotherms. Composite electrodes were prepared using a mixture of LiCoO2, carbon black and poly(vinylidene fluoride) (PVDF) in the 85:10:5% w/w ratio. The electrochemical behavior of these composites was evaluated in ethylene carbonate/dimethylcarbonate solution, using lithium perchlorate as supporting electrolyte. Cyclic voltammograms showed one reversible redox process at 4.0/3.85 V and one irreversible redox process at 3.3 V for the LiCoO2 obtained after a post-heat treatment at 400 and 500 degreesC.Raman spectroscopy showed the possible presence of LiCoO2 with cubic structure for the material obtained at 400 and 500 degreesC. This result is in agreement with X-ray data with structural refinement for the LiCoO2 powders obtained at different temperatures using the Rietveld method. Data from this method showed the coexistence of cubic LiCoO2 (spinel) and rhombohedral (layered) structures when LiCoO2 was obtained at lower temperatures (400 and 500 degreesC). The single rhombohedral structure for LiCoO2 was obtained after post-heat treatment at 600 degreesC. The maximum energy capacity in the first discharge was 136 mA g(-1) for the composite electrode based on LiCoO2 obtained after heat treatment at 700 degreesC. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Phenolic resins when heat treated in inert atmosphere up to 1000 degreesC become glassy polymeric carbon (GPC), a chemically inert and biocompatible material useful for medical applications, such as in the manufacture of heart valves and prosthetic devices. In earlier work we have shown that ion bombardment can modify the surface of GPC, increasing its roughness. The enhanced roughness, which depends on the species, energy and fluence of the ion beam, can improve the biocompatibility of GPC prosthetic artifacts. In this work, ion bombardment was used to make a layer of implanted ions under the surface to avoid the propagation of microcracks in regions where cardiac valves should have pins for fixation of the leaflets. GPC samples prepared at 700 and 1500 degreesC were bombarded with ions of silicon. carbon, oxygen and gold at energies of 5, 6, 8 and 10 MeV, respectively, and fluences between 1.0 x 10(13) and 1.0 x 10(16) ions/cm(2). Nanoindentation hardness characterization was used to compare bombarded with non-bombarded samples prepared at temperatures up to 2500 degreesC. The results with samples not bombarded showed that the hardness of GPC increases strongly with the heat treatment temperature. Comparison with ion bombarded samples shows that the hardness changes according to the ion used, the energy and fluence. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Titanium and their alloys have been used for biomedical applications due their excellent mechanical properties, corrosion resistance and biocompatibility. However, they are considered bioinerts materials because when they are inserted into the human body they are cannot form a chemical bond with bone. In several studies, the authors have attempted to modify their characteristic with treatments that changes the material surface. The purpose of this work was to evaluate obtaining of nanoapatite after growing of the nanotubes in surface of Ti-7.5Mo alloy. Alloy was obtained from c.p. titanium and molibdenium by using an arc-melting furnace. Ingots were submitted to heat treatment and they were cold worked by swaging. Nanotubes were processed using anodic oxidation of alloy in electrolyte solution. Surfaces were investigated using scanning electron microscope (SEM), FEG-SEM and thin-film x-ray diffraction. The results indicate that nanoapatite coating could form on surface of Ti-7.5Mo experimental alloy after nanotubes growth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

T. gondii is an obligate intracellular protozoan and the main cause of retinochoroiditis in humans. The aim of this study was to evaluate the effect of the antipsychotic drugs haloperidol and clozapine on the course of infection by T. gondii of cultured embryonic retinal cells. Embryo retinas of Gallus gallus domesticus (E12) were used for the preparation of mixed monolayer cultures of retinal cells. Cultures were maintained on plates of 96 and 24 wells by 37°C in DMEM medium supplemented with 5% fetal bovine serum for 2 days. After this period, cultures were simultaneously infected with tachyzoites of T. gondii and treated with the antipsychotics haloperidol and clozapine for 48 hours. Treatment effects were determined by both assessing cell viability with the MTT method and evaluating infection outcomes in slides stained with Giemsa. The treatment with haloperidol and clozapine cells infected with T. gondii resulted in higher viability of these cells, suggesting a possible prevention of neuronal degeneration induced by T. gondii. Additionally, intracellular replication of this protozoan in cells treated with haloperidol and clozapine were significantly reduced, possibly by modulation of the parasite s intracellular calcium concentration

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neste trabalho foi realizada a caracterização mecânica e microestrutural de um aço microligado com estrutura multifásica. Foi aplicado tratamento térmico pré-determinado, objetivando a formação de uma microestrutura multifásica no material. Na caracterização microestrutural foram utilizados ataques químicos à base de metabissulfito de sódio e ácido pícrico, enquanto a caracterização mecânica foi realizada através de ensaios de tração. Os resultados demonstram o elevado potencial dos aços multifásicos em aplicações que necessitem de valores superiores de resistência e ductilidade, pois tanto para temperatura isotérmica de 400ºC quanto para 350ºC houve um ganho no limite de resistência à tração ficando em torno de 786MPa e 773MPa respectivamente, representando um aumento de 15,5% e 13,6% com relação ao material fornecido.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Stainless steels are used to intake and exhaust valves production applied as internal combustion engines. In general valves are requested to support cyclic stresses applied due to opening and closing processes during the operation. The objective of this research is to study the influence on the axial fatigue strength of the resulting microstructure after heat treatment at the martensitic X45CrSi93 steel, combined with different surface treatments as hard chrome-plating, nitride and grinding. It was verified a significant increase on the fatigue strength of the martensitic steel after nitriding, compared with results from the chrome-plating specimens. A slight increase in the tensile strength was also noticed on nitrided parts as a consequence of a resistance increase due to nitrogen and carbon solid solution. (C) 2011 Published by Elsevier Ltd. Selection and peer-review under responsibility of ICM11

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Emissions of CO2 in the atmosphere have increased successively by various mechanisms caused by human action, especially as fossil fuel combustion and industrial chemical processes. This leads to the increase in average temperature in the atmosphere, which we call global warming. The search for new technologies to minimize environmental impacts arising from this phenomenon has been investigated. The capture of CO2 is one of the alternatives that can help reduce emis ions of greenhouse gases. The CO2 can be captured through the process of selective adsorption using adsorbents for this purpose. Were synthesized by hydrothermal method, materials of the type MCM-41 and Al-MCM-41 in the molar ratio Si / Al equal to 50. The synthesis of gels were prepared from a source of silicon, sodium, water and aluminum in the case of Al-MCM-41. The period of synthesis of the materials was 5 days in autoclave at 100°C. After that time materials were filtered, washed and dried in greenhouse at 100 º C for 4 hours and then calcined at 450 º C. Then the calcined material was functionalized with the Di-isopropylamine (DIPA) by the method of wet impregnation. We used 0.5 g of material mesopores to 3.5 mL of DIPA. The materials were functionalized in a closed container for 24 hours, and after this period were dried at brackground temperature for 2 hours. Were subsequently subjected to heat treatment at 250°C for 1 hour. These materials were used for the adsorption of CO2 and were characterized by XRD, FT-IR, BET / BJH, SEM, EDX and TG / DTG. Tests of adsorption of CO2 was carried out under the following conditions: 100 mg of adsorbent, temperature of 75°C under flow of 100 mL/min of CO2 for 2 hours. The desorption of CO2 was carried out by thermogravimetry from ambient temperature to 900ºC under flow of 25 mL min of He and a ratio of 10ºC/min. The difratogramas X-ray for the synthesized samples showed the characteristic peaks of MCM-41, showing that the structure of it was obtained. For samples functionalized there was a decrease of the intensities of these peaks, with a consequent reduction in the structural ordering of the material. However, the structure was preserved mesopores. The adsorption tests showed that the functionalized MCM-41 is presented as a material promising adsorbent, for CO2 capture, with a loss of mass on the desorption CO2 of 7,52%, while that in Al-MCM- 41 functionalized showed no such loss

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The catalytic processes play a vital role in the worldwide economy, a business that handles about US$ 13 billion per year because the value of products depends on the catalytic processes, including petroleum products, chemicals, pharmaceuticals, synthetic rubbers and plastics, among others. The zeolite ZSM-5 is used as catalyst for various reactions in the area petrochemical, petroleum refining and fine chemicals, especially the reactions of cracking, isomerization, alkylation, aromatization of olefins, among others. Many researchers have studied the hydrothermal synthesis of zeolite ZSM-5 free template and they obtained satisfactory results, so this study aims to evaluate the hydrothermal synthesis and the physicochemical properties of ZSM-5 with the presence and absence of template compared with commercial ZSM-5. The methods for hydrothermal synthesis of zeolite ZSM-5 are of scientific knowledge, providing the chemical composition required for the formation of zeolitic structure in the presence and absence of template. Samples of both zeolites ZSM-5 in protonic form were obtained by heat treatment and ion exchange, according to procedures reported in the literature. The sample of commercial ZSM-5 was acquired by the company Sentex Industrial Ltda. All samples were characterized by XRD, SEM, FTIR, TG / DTG / DSC, N2 adsorption and desorption and study of acidity by thermo-desorption of probe molecule (n-butylamine), in order to understand their physicochemical properties. The efficiency of the methods applied in this work and reported in the literature has been proved by well-defined structure of ZSM-5. According as the evaluation of physicochemical properties, zeolite ZSM-5 free template becomes promising for application in the refining processes or use as catalytic support, since its synthesis reduces environmental impacts and production costs

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article reports a study of the thermal stability and morphological changes in tin oxide nanobelts grown in the orthorhombic SnO phase. The nanobelts were heat-treated in a differential scanning calorimetry (DSC) furnace at 800 degrees C for I It in argon, oxygen, or synthetic air atmospheres. The samples were then characterized by DSC, X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), and high resolution field emission scanning electron microscopy (FE-SEM). The results confirmed that the orthorhombic SnO phase is thermodynamically unstable, causing the belts to transform into the SnO2 phase when heat-treated. During the phase transition, if oxygen is available in the furnace atmosphere, nanofibers grow at the edge of nanobelts at about 50 degrees of the belts' growth direction, while particles grow on the belt surface in the absence of oxygen. Although the decomposition process reduces the nanobelt cell volume by 22%, most belts remain monocrystalline after the heat treatment. The results confirm that phase transition is a decomposition process, which explains the morphological changes in the belts based on metallic tin generated in the process.