994 resultados para Harrison, Clifford.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurements of atmospheric corona currents have been made for over 100 years to indicate the atmospheric electric field. Corona currents vary substantially, in polarity and in magnitude. The instrument described here uses a sharp point sensor connected to a temperature compensated bi-polar logarithmic current amplifier. Calibrations over a range of currents from ±10 fA to ±3 μA and across ±20 ◦C show it has an excellent logarithmic response over six orders of magnitude from 1 pA to 1 μA in both polarities for the range of atmospheric temperatures likely to be encountered in the southern UK. Comparison with atmospheric electric field measurements during disturbed weather confirms that bipolar electric fields induce corona currents of corresponding sign, with magnitudes ∼0.5 μA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The biomisation method is used to reconstruct Latin American vegetation at 6000±500 and 18 000±1000 radiocarbon years before present (14C yr BP) from pollen data. Tests using modern pollen data from 381 samples derived from 287 locations broadly reproduce potential natural vegetation. The strong temperature gradient associated with the Andes is recorded by a transition from high altitude cool grass/shrubland and cool mixed forest to mid-altitude cool temperate rain forest, to tropical dry, seasonal and rain forest at low altitudes. Reconstructed biomes from a number of sites do not match the potential vegetation due to local factors such as human impact, methodological artefacts and mechanisms of pollen representivity of the parent vegetation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The physical pendulum treated with a Hamiltonian formulation is a natural topic for study in a course in advanced classical mechanics. For the past three years, we have been offering a series of problem sets studying this system numerically in our third-year undergraduate courses in mechanics. The problem sets investigate the physics of the pendulum in ways not easily accessible without computer technology and explore various algorithms for solving mechanics problems. Our computational physics is based on Mathematica with some C communicating with Mathematica, although nothing in this paper is dependent on that choice. We have nonetheless found this system, and particularly its graphics, to be a good one for use with undergraduates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper explores a segmentation of micro and small enterprises (MSEs) in developing countries within the formal/informal economy nexus that has wide-ranging implications for the targeting of base-of-the-pyramid initiatives and entrepreneurship theory. This proposed segmentation emerges from the analysis of a sample of Kenyan MSEs utilising current and prior business models; the antecedent influences shaping the business model; barriers to entry associated with knowledge, capital and skills; the degree of innovation or imitation evident in the business model linked to the nature of opportunity recognition; and their relationship with the formal institutional business environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the scaling between precipitation and temperature changes in warm and cold climates using six models that have simulated the response to both increased CO2 and Last Glacial Maximum (LGM) boundary conditions. Globally, precipitation increases in warm climates and decreases in cold climates by between 1.5%/°C and 3%/°C. Precipitation sensitivity to temperature changes is lower over the land than over the ocean and lower over the tropical land than over the extratropical land, reflecting the constraint of water availability. The wet tropics get wetter in warm climates and drier in cold climates, but the changes in dry areas differ among models. Seasonal changes of tropical precipitation in a warmer world also reflect this “rich get richer” syndrome. Precipitation seasonality is decreased in the cold-climate state. The simulated changes in precipitation per degree temperature change are comparable to the observed changes in both the historical period and the LGM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During each of the late Pleistocene glacial–interglacial transitions, atmospheric carbon dioxide concentrations rose by almost 100 ppm. The sources of this carbon are unclear, and efforts to identify them are hampered by uncertainties in the magnitude of carbon reservoirs and fluxes under glacial conditions. Here we use oxygen isotope measurements from air trapped in ice cores and ocean carbon-cycle modelling to estimate terrestrial and oceanic gross primary productivity during the Last Glacial Maximum. We find that the rate of gross terrestrial primary production during the Last Glacial Maximum was about 40±10 Pg C yr−1, half that of the pre-industrial Holocene. Despite the low levels of photosynthesis, we estimate that the late glacial terrestrial biosphere contained only 330 Pg less carbon than pre-industrial levels. We infer that the area covered by carbon-rich but unproductive biomes such as tundra and cold steppes was significantly larger during the Last Glacial Maximum, consistent with palaeoecological data. Our data also indicate the presence of an inert carbon pool of 2,300 Pg C, about 700 Pg larger than the inert carbon locked in permafrost today. We suggest that the disappearance of this carbon pool at the end of the Last Glacial Maximum may have contributed to the deglacial rise in atmospheric carbon dioxide concentrations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Earth system models are increasing in complexity and incorporating more processes than their predecessors, making them important tools for studying the global carbon cycle. However, their coupled behaviour has only recently been examined in any detail, and has yielded a very wide range of outcomes, with coupled climate-carbon cycle models that represent land-use change simulating total land carbon stores by 2100 that vary by as much as 600 Pg C given the same emissions scenario. This large uncertainty is associated with differences in how key processes are simulated in different models, and illustrates the necessity of determining which models are most realistic using rigorous model evaluation methodologies. Here we assess the state-of-the-art with respect to evaluation of Earth system models, with a particular emphasis on the simulation of the carbon cycle and associated biospheric processes. We examine some of the new advances and remaining uncertainties relating to (i) modern and palaeo data and (ii) metrics for evaluation, and discuss a range of strategies, such as the inclusion of pre-calibration, combined process- and system-level evaluation, and the use of emergent constraints, that can contribute towards the development of more robust evaluation schemes. An increasingly data-rich environment offers more opportunities for model evaluation, but it is also a challenge, as more knowledge about data uncertainties is required in order to determine robust evaluation methodologies that move the field of ESM evaluation from "beauty contest" toward the development of useful constraints on model behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The response of monsoon circulation in the northern and southern hemisphere to 6 ka orbital forcing has been examined in 17 atmospheric general circulation models and 11 coupled ocean–atmosphere general circulation models. The atmospheric response to increased summer insolation at 6 ka in the northern subtropics strengthens the northern-hemisphere summer monsoons and leads to increased monsoonal precipitation in western North America, northern Africa and China; ocean feedbacks amplify this response and lead to further increase in monsoon precipitation in these three regions. The atmospheric response to reduced summer insolation at 6 ka in the southern subtropics weakens the southern-hemisphere summer monsoons and leads to decreased monsoonal precipitation in northern South America, southern Africa and northern Australia; ocean feedbacks weaken this response so that the decrease in rainfall is smaller than might otherwise be expected. The role of the ocean in monsoonal circulation in other regions is more complex. There is no discernable impact of orbital forcing in the monsoon region of North America in the atmosphere-only simulations but a strong increase in precipitation in the ocean–atmosphere simulations. In contrast, there is a strong atmospheric response to orbital forcing over northern India but ocean feedback reduces the strength of the change in the monsoon although it still remains stronger than today. Although there are differences in magnitude and exact location of regional precipitation changes from model to model, the same basic mechanisms are involved in the oceanic modulation of the response to orbital forcing and this gives rise to a robust ensemble response for each of the monsoon systems. Comparison of simulated and reconstructed changes in regional climate suggest that the coupled ocean–atmosphere simulations produce more realistic changes in the northern-hemisphere monsoons than atmosphere-only simulations, though they underestimate the observed changes in precipitation in all regions. Evaluation of the southern-hemisphere monsoons is limited by lack of quantitative reconstructions, but suggest that model skill in simulating these monsoons is limited.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a simple theoretical land-surface classification that can be used to determine the location and temporal behavior of preferential sources of terrestrial dust emissions. The classification also provides information about the likely nature of the sediments, their erodibility and the likelihood that they will generate emissions under given conditions. The scheme is based on the dual notions of geomorphic type and connectivity between geomorphic units. We demonstrate that the scheme can be used to map potential modern-day dust sources in the Chihuahuan Desert, the Lake Eyre Basin and the Taklamakan. Through comparison with observed dust emissions, we show that the scheme provides a reasonable prediction of areas of emission in the Chihuahuan Desert and in the Lake Eyre Basin. The classification is also applied to point source data from the Western Sahara to enable comparison of the relative importance of different land surfaces for dust emissions. We indicate how the scheme could be used to provide an improved characterization of preferential dust sources in global dust-cycle models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four CO2 concentration inversions and the Global Fire Emissions Database (GFED) versions 2.1 and 3 are used to provide benchmarks for climate-driven modeling of the global land-atmosphere CO2 flux and the contribution of wildfire to this flux. The Land surface Processes and exchanges (LPX) model is introduced. LPX is based on the Lund-Potsdam-Jena Spread and Intensity of FIRE (LPJ-SPITFIRE) model with amended fire probability calculations. LPX omits human ignition sources yet simulates many aspects of global fire adequately. It captures the major features of observed geographic pattern in burnt area and its seasonal timing and the unimodal relationship of burnt area to precipitation. It simulates features of geographic variation in the sign of the interannual correlations of burnt area with antecedent dryness and precipitation. It simulates well the interannual variability of the global total land-atmosphere CO2 flux. There are differences among the global burnt area time series from GFED2.1, GFED3 and LPX, but some features are common to all. GFED3 fire CO2 fluxes account for only about 1/3 of the variation in total CO2 flux during 1997–2005. This relationship appears to be dominated by the strong climatic dependence of deforestation fires. The relationship of LPX-modeled fire CO2 fluxes to total CO2 fluxes is weak. Observed and modeled total CO2 fluxes track the El Niño–Southern Oscillation (ENSO) closely; GFED3 burnt area and global fire CO2 flux track the ENSO much less so. The GFED3 fire CO2 flux-ENSO connection is most prominent for the El Niño of 1997–1998, which produced exceptional burning conditions in several regions, especially equatorial Asia. The sign of the observed relationship between ENSO and fire varies regionally, and LPX captures the broad features of this variation. These complexities underscore the need for process-based modeling to assess the consequences of global change for fire and its implications for the carbon cycle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant traits – the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs – determine how primary producers respond to environmental factors, affect other trophic levels, influence ecosystem processes and services and provide a link from species richness to ecosystem functional diversity. Trait data thus represent the raw material for a wide range of research from evolutionary biology, community and functional ecology to biogeography. Here we present the global database initiative named TRY, which has united a wide range of the plant trait research community worldwide and gained an unprecedented buy-in of trait data: so far 93 trait databases have been contributed. The data repository currently contains almost three million trait entries for 69 000 out of the world's 300 000 plant species, with a focus on 52 groups of traits characterizing the vegetative and regeneration stages of the plant life cycle, including growth, dispersal, establishment and persistence. A first data analysis shows that most plant traits are approximately log-normally distributed, with widely differing ranges of variation across traits. Most trait variation is between species (interspecific), but significant intraspecific variation is also documented, up to 40% of the overall variation. Plant functional types (PFTs), as commonly used in vegetation models, capture a substantial fraction of the observed variation – but for several traits most variation occurs within PFTs, up to 75% of the overall variation. In the context of vegetation models these traits would better be represented by state variables rather than fixed parameter values. The improved availability of plant trait data in the unified global database is expected to support a paradigm shift from species to trait-based ecology, offer new opportunities for synthetic plant trait research and enable a more realistic and empirically grounded representation of terrestrial vegetation in Earth system models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding how species and ecosystems respond to climate change has become a major focus of ecology and conservation biology. Modelling approaches provide important tools for making future projections, but current models of the climate-biosphere interface remain overly simplistic, undermining the credibility of projections. We identify five ways in which substantial advances could be made in the next few years: (i) improving the accessibility and efficiency of biodiversity monitoring data, (ii) quantifying the main determinants of the sensitivity of species to climate change, (iii) incorporating community dynamics into projections of biodiversity responses, (iv) accounting for the influence of evolutionary processes on the response of species to climate change, and (v) improving the biophysical rule sets that define functional groupings of species in global models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The leaf carbon isotope ratio (δ13C) of C3 plants is inversely related to the drawdown of CO2 concentration during photosynthesis, which increases towards drier environments. We aimed to discriminate between the hypothesis of universal scaling, which predicts between-species responses of δ13C to aridity similar to within-species responses, and biotic homoeostasis, which predicts offsets in the δ13C of species occupying adjacent ranges. The Northeast China Transect spans 130–900 mm annual precipitation within a narrow latitude and temperature range. Leaves of 171 species were sampled at 33 sites along the transect (18 at ≥ 5 sites) for dry matter, carbon (C) and nitrogen (N) content, specific leaf area (SLA) and δ13C. The δ13C of species generally followed a common relationship with the climatic moisture index (MI). Offsets between adjacent species were not observed. Trees and forbs diverged slightly at high MI. In C3 plants, δ13C predicted N per unit leaf area (Narea) better than MI. The δ13C of C4 plants was invariant with MI. SLA declined and Narea increased towards low MI in both C3 and C4 plants. The data are consistent with optimal stomatal regulation with respect to atmospheric dryness. They provide evidence for universal scaling of CO2 drawdown with aridity in C3 plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

•In current models, the ecophysiological effects of CO2 create both woody thickening and terrestrial carbon uptake, as observed now, and forest cover and terrestrial carbon storage increases that took place after the last glacial maximum (LGM). Here, we aimed to assess the realism of modelled vegetation and carbon storage changes between LGM and the pre-industrial Holocene (PIH). •We applied Land Processes and eXchanges (LPX), a dynamic global vegetation model (DGVM), with lowered CO2 and LGM climate anomalies from the Palaeoclimate Modelling Intercomparison Project (PMIP II), and compared the model results with palaeodata. •Modelled global gross primary production was reduced by 27–36% and carbon storage by 550–694 Pg C compared with PIH. Comparable reductions have been estimated from stable isotopes. The modelled areal reduction of forests is broadly consistent with pollen records. Despite reduced productivity and biomass, tropical forests accounted for a greater proportion of modelled land carbon storage at LGM (28–32%) than at PIH (25%). •The agreement between palaeodata and model results for LGM is consistent with the hypothesis that the ecophysiological effects of CO2 influence tree–grass competition and vegetation productivity, and suggests that these effects are also at work today.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have compiled 223 sedimentary charcoal records from Australasia in order to examine the temporal and spatial variability of fire regimes during the Late Quaternary. While some of these records cover more than a full glacial cycle, here we focus on the last 70,000 years when the number of individual records in the compilation allows more robust conclusions. On orbital time scales, fire in Australasia predominantly reflects climate, with colder periods characterized by less and warmer intervals by more biomass burning. The composite record for the region also shows considerable millennial-scale variability during the last glacial interval (73.5–14.7 ka). Within the limits of the dating uncertainties of individual records, the variability shown by the composite charcoal record is more similar to the form, number and timing of Dansgaard–Oeschger cycles as observed in Greenland ice cores than to the variability expressed in the Antarctic ice-core record. The composite charcoal record suggests increased biomass burning in the Australasian region during Greenland Interstadials and reduced burning during Greenland Stadials. Millennial-scale variability is characteristic of the composite record of the sub-tropical high pressure belt during the past 21 ka, but the tropics show a somewhat simpler pattern of variability with major peaks in biomass burning around 15 ka and 8 ka. There is no distinct change in fire regime corresponding to the arrival of humans in Australia at 50 ± 10 ka and no correlation between archaeological evidence of increased human activity during the past 40 ka and the history of biomass burning. However, changes in biomass burning in the last 200 years may have been exacerbated or influenced by humans.