920 resultados para Hancock (Mich.)
Resumo:
The aim of this paper Is lo discuss the influence of the selection of the interpolation kernel in the accuracy of the modeling of the internal viscous dissipation in Tree surface Hows, Simulations corresponding to a standing wave* for which an analytic solution available, are presented. Wendland and renormalized Gaussian kernels are considered. The differences in the flow pattern* and Internal dissipation mechanisms are documented for a range of Reynolds numbers. It is shown that the simulations with Wendland kernels replicate the dissipation mechanisms more accurately than those with a renormalized Gaussian kernel. Although some explanations are hinted we have Tailed to clarify which the core structural reasons for Mich differences are*
Resumo:
Contiene con portadilla propia : Mich. Io. Bodini Panegyricus Beato Thomae archiep. valent. scriptus ..
Resumo:
A series of numerical simulations of the flow over a forest stand have been conducted using two different turbulence closure models along with various levels of canopy morphology data. Simulations have been validated against Stereoscopic Particle Image Velocimetry measurements from a wind tunnel study using one hundred architectural model trees, the porosities of which have been assessed using a photographic technique. It has been found that an accurate assessment of the porosity of the canopy, and specifically the variability with height, improves simulation quality regardless of the turbulence closure model used or the level of canopy geometry included. The observed flow field and recovery of the wake is in line with characteristic canopy flows published in the literature and it was found that the shear stress transport turbulence model was best able to capture this detail numerically.
Resumo:
Copia digital: Biblioteca Valenciana, 2011
Resumo:
1910
Resumo:
Kinesin is a processive motor protein: A single molecule can walk continuously along a microtubule for several micrometers, taking hundreds of 8-nm steps without dissociating. To elucidate the biochemical and structural basis for processivity, we have engineered a heterodimeric one-headed kinesin and compared its biochemical properties to those of the wild-type two-headed molecule. Our construct retains the functionally important neck and tail domains and supports motility in high-density microtubule gliding assays, though it fails to move at the single-molecule level. We find that the ATPase rate of one-headed kinesin is 3–6 s−1 and that detachment from the microtubule occurs at a similar rate (3 s−1). This establishes that one-headed kinesin usually detaches once per ATP hydrolysis cycle. Furthermore, we identify the rate-limiting step in the one-headed hydrolysis cycle as detachment from the microtubule in the ADP⋅Pi state. Because the ATPase and detachment rates are roughly an order of magnitude lower than the corresponding rates for two-headed kinesin, the detachment of one head in the homodimer (in the ADP⋅Pi state) must be accelerated by the other head. We hypothesize that this results from internal strain generated when the second head binds. This idea accords with a hand-over-hand model for processivity in which the release of the trailing head is contingent on the binding of the forward head. These new results, together with previously published ones, allow us to propose a pathway that defines the chemical and mechanical cycle for two-headed kinesin.