884 resultados para HISTORICAL DATA-ANALYSIS
Resumo:
African dust outbreaks are the result of complex interactions between the land, atmosphere, and oceans, and only recently has a large body of work begun to emerge that aims to understand the controls on-and impacts of-African dust. At the same time, long-term records of dust outbreaks are either inferred from visibility data from weather stations or confined to a few in situ observational sites. Satellites provide the best opportunity for studying the large-scale characteristics of dust storms, but reliable records of dust are generally on the scale of a decade or less. Here the authors develop a simple model for using modern and historical data from meteorological satellites, in conjunction with a proxy record for atmospheric dust, to extend satellite-retrieved dust optical depth over the northern tropical Atlantic Ocean from 1955 to 2008. The resultant 54-yr record of dust has a spatial resolution of 1° and a monthly temporal resolution. From analysis of the historical dust data, monthly tropical northern Atlantic dust cover is bimodal, has a strong annual cycle, peaked in the early 1980s, and shows minimums in dustiness during the beginning and end of the record. These dust optical depth estimates are used to calculate radiative forcing and heating rates from the surface through the top of the atmosphere over the last half century. Radiative transfer simulations show a large net negative dust forcing from the surface through the top of the atmosphere, also with a distinct annual cycle, and mean tropical Atlantic monthly values of the surface forcing range from -3 to -9 W/m**2. Since the surface forcing is roughly a factor of 3 larger in magnitude than the top-of-the-atmosphere forcing, there is also a positive heating rate of the midtroposphere by dust.
Resumo:
RV POSEIDON cruise POS264 was carried out by the Institut für Meereskunde of the University of Hamburg and staff from the Niels Bohr Instituttet for Astronomi, Fysik og Geofysik of the University of Copenhagen also participated. The cruise had several objectives: - to educate undergraduate students in the handling of oceanographic instrumentation and in the collection and analysis of field data, - to map the cold overflow through the Faroe-Bank Channel from the Norwegian Sea into the Icelandic Basin and to study its short-time variability and - to quantify the contributions of the water masses which are involved in the mixing of the overflow plume with its ambient water. The planning and preparation of the cruise involved the participating students and was carried out during seminars, both at the Universities of Hamburg and Copenhagen. Following a review of the recent literature and an analysis of historical data the observational programme was designed. Hydrographic and current profiling stations were occupied along several sections crossing the overflow. The experiment was financed by the University of Hamburg. Temperature, salinity and dissolved oxygen data from CTD stations are presented. The temperature and salinity data were quality controlled and calibrated. Oxygen data are not calibrated as no oxygen samples were taken additionally during the cruise.
Resumo:
An important competence of human data analysts is to interpret and explain the meaning of the results of data analysis to end-users. However, existing automatic solutions for intelligent data analysis provide limited help to interpret and communicate information to non-expert users. In this paper we present a general approach to generating explanatory descriptions about the meaning of quantitative sensor data. We propose a type of web application: a virtual newspaper with automatically generated news stories that describe the meaning of sensor data. This solution integrates a variety of techniques from intelligent data analysis into a web-based multimedia presentation system. We validated our approach in a real world problem and demonstrate its generality using data sets from several domains. Our experience shows that this solution can facilitate the use of sensor data by general users and, therefore, can increase the utility of sensor network infrastructures.
Resumo:
Este trabajo estudia la aportación que los métodos de agregación de juicios de expertos pueden realizar en el cálculo de la peligrosidad sísmica de emplazamientos. Se han realizado cálculos en dos emplazamientos de la Península Ibérica: Mugardos (La Coruña) y Cofrentes (Valencia) que están sometidos a regímenes tectónicos distintos y que, además, alojan instalaciones industriales de gran responsabilidad. Las zonas de estudio, de 320 Km de radio, son independientes. Se ha aplicado un planteamiento probabilista a la estimación de la tasa anual de superación de valores de la aceleración horizontal de pico y se ha utilizado el Método de Montecarlo para incorporar a los resultados la incertidumbre presente en los datos relativos a la definición de cada fuente sismogenética y de su sismicidad. Los cálculos se han operado mediante un programa de ordenador, desarrollado para este trabajo, que utiliza la metodología propuesta por el Senior Seismic Hazard Analysis Commitee (1997) para la NRC. La primera conclusión de los resultados ha sido que la Atenuación es la fuente principal de incertidumbre en las estimaciones de peligrosidad en ambos casos. Dada la dificultad de completar los datos históricos disponibles de esta variable se ha estudiado el comportamiento de cuatro métodos matemáticos de agregación de juicios de expertos a la hora de estimar una ley de atenuación en un emplazamiento. Los datos de partida se han obtenido del Catálogo de Isosistas del IGN. Los sismos utilizados como variables raíz se han elegido con el criterio de cubrir uniformemente la serie histórica disponible y los valores de magnitud observados. Se ha asignado un panel de expertos particular a cada uno de los dos emplazamientos y se han aplicado a sus juicios los métodos de Cooke, equipesos, Apostolakis_Mosleh y Morris. Sus propuestas se han comparado con los datos reales para juzgar su eficacia y su facilidad de operación. A partir de los resultados se ha concluido que el método de Cooke ha mostrado el comportamiento más eficiente y robusto para ambos emplazamientos. Este método, además, ha permitido identificar, razonadamente, a aquellos expertos que no deberían haberse introducido en un panel. The present work analyses the possible contribution of the mathematical methods of aggregation in the assessment of Seismic Hazzard. Two sites, in the Iberian Peninsula, have been considered: Mugardos ( La Coruña) and Cofrentes (Valencia).Both of them are subjected to different tectonic regimes an both accommodate high value industrial plants. Their areas of concern, with radius of 320 Km, are not overlapping. A probabilistic approach has been applied in the assessment the annual probability of exceedence of the horizontal peak acceleration. The Montecarlo Method has allowed to transfer the uncertainty in the models and parameters to the final results. A computer program has been developed for this purpose. The methodology proposed by the Senior Seismic Analysis Committee (1997) for the NRC has been considered. Attenuation in Ground motion has been proved to be the main source of uncertainty in seismic hazard for both sites. Taking into account the difficulties to complete existing historical data in this subject the performance of four mathematical methods of aggregation has been studied. Original data have been obtained from the catalogs of the Spanish National Institute of Geography. The seismic events considered were chosen to cover evenly the historical records and the observed values of magnitude. A panel of experts have been applied to each site and four aggregation methods have been developed : equal weights, Cooke, Apostolakis-Mosleh and Morris The four proposals have been compaired with the actual data to judge their performance and ease of application. The results have shown that the Method of Cooke have proved the most efficient and robust for both sites. This method, besides, allow the reasoned identification of those experts who should be rejected from the panel
Resumo:
We can say without hesitation that in energy markets a throughout data analysis is crucial when designing sophisticated models that are able to capture most of the critical market drivers. In this study we will attempt to investigate into Spanish natural gas prices structure to improve understanding of the role they play in the determination of electricity prices and decide in the future about price modelling aspects. To further understand the potential for modelling, this study will focus on the nature and characteristics of the different gas price data available. The fact that the existing gas market in Spain does not incorporate enough liquidity of trade makes it even more critical to analyze in detail available gas price data information that in the end will provide relevant information to understand how electricity prices are affected by natural gas markets. In this sense representative Spanish gas prices are typically difficult to explore given the fact that there is not a transparent gas market yet and all the gas imported in the country is negotiated and purchased by private companies at confidential terms.
Resumo:
La presente Tesis plantea una metodología de análisis estadístico de roturas de tubería en redes de distribución de agua, que analiza la relación entre las roturas y la presión de agua y que propone la implantación de una gestión de presiones que reduzca el número de roturas que se producen en dichas redes. Las redes de distribución de agua se deterioran y una de sus graves consecuencias es la aparición de roturas frecuentes en sus tuberías. Las roturas llevan asociados elevados costes sociales, económicos y medioambientales y es por ello por lo que las compañías gestoras del agua tratan de reducirlas en la medida de lo posible. Las redes de distribución de agua se pueden dividir en zonas o sectores que facilitan su control y que pueden ser independientes o aislarse mediante válvulas, como ocurre en las redes de países más desarrollados, o pueden estar intercomunicados hidráulicamente. La implantación de una gestión de presiones suele llevarse a cabo a través de las válvulas reductoras de presión (VPR), que se instalan en las cabeceras de estos sectores y que controlan la presión aguas abajo de la misma, aunque varíe su caudal de entrada. Los métodos más conocidos de la gestión de presiones son la reducción de presiones, que es el control más habitual, el mantenimiento de la presión, la prevención y/o alivio de los aumentos repentinos de presión y el establecimiento de un control por alturas. A partir del año 2005 se empezó a reconocer el efecto de la gestión de presiones sobre la disminución de las roturas. En esta Tesis, se sugiere una gestión de presiones que controle los rangos de los indicadores de la presión de cabecera que más influyan en la probabilidad de roturas de tubería. Así, la presión del agua se caracteriza a través de indicadores obtenidos de la presión registrada en la cabecera de los sectores, debido a que se asume que esta presión es representativa de la presión de operación de todas las tuberías porque las pérdidas de carga son relativamente bajas y las diferencias topográficas se tienen en cuenta en el diseño de los sectores. Y los indicadores de presión, que se pueden definir como el estadístico calculado a partir de las series de la presión de cabecera sobre una ventana de tiempo, pueden proveer la información necesaria para ayudar a la toma de decisiones a los gestores del agua con el fin de reducir las roturas de tubería en las redes de distribución de agua. La primera parte de la metodología que se propone en esta Tesis trata de encontrar los indicadores de presión que influyen más en la probabilidad de roturas de tuberías. Para conocer si un indicador es influyente en la probabilidad de las roturas se comparan las estimaciones de las funciones de distribución acumulada (FDAs) de los indicadores de presiones, considerando dos situaciones: cuando se condicionan a la ocurrencia de una rotura (suceso raro) y cuando se calculan en la situación normal de operación (normal operación). Por lo general, las compañías gestoras cuentan con registros de roturas de los años más recientes y al encontrarse las tuberías enterradas se complica el acceso a la información. Por ello, se propone el uso de funciones de probabilidad que permiten reducir la incertidumbre asociada a los datos registrados. De esta forma, se determinan las funciones de distribución acumuladas (FDAs) de los valores del indicador de la serie de presión (situación normal de operación) y las FDAs de los valores del indicador en el momento de ocurrencia de las roturas (condicionado a las roturas). Si las funciones de distribución provienen de la misma población, no se puede deducir que el indicador claramente influya en la probabilidad de roturas. Sin embargo, si se prueba estadísticamente que las funciones proceden de la misma población, se puede concluir que existe una relación entre el indicador analizado y la ocurrencia de las roturas. Debido a que el número de valores del indicador de la FDA condicionada a las roturas es mucho menor que el número de valores del indicador de la FDA incondicional a las roturas, se generan series aleatorias a partir de los valores de los indicadores con el mismo número de valores que roturas registradas hay. De esta forma, se comparan las FDAs de series aleatorias del indicador con la FDA condicionada a las roturas del mismo indicador y se deduce si el indicador es influyente en la probabilidad de las roturas. Los indicadores de presión pueden depender de unos parámetros. A través de un análisis de sensibilidad y aplicando un test estadístico robusto se determina la situación en la que estos parámetros dan lugar a que el indicador sea más influyente en la probabilidad de las roturas. Al mismo tiempo, los indicadores se pueden calcular en función de dos parámetros de cálculo que se denominan el tiempo de anticipación y el ancho de ventana. El tiempo de anticipación es el tiempo (en horas) entre el final del periodo de computación del indicador de presión y la rotura, y el ancho de ventana es el número de valores de presión que se requieren para calcular el indicador de presión y que es múltiplo de 24 horas debido al comportamiento cíclico diario de la presión. Un análisis de sensibilidad de los parámetros de cálculo explica cuándo los indicadores de presión influyen más en la probabilidad de roturas. En la segunda parte de la metodología se presenta un modelo de diagnóstico bayesiano. Este tipo de modelo forma parte de los modelos estadísticos de prevención de roturas, parten de los datos registrados para establecer patrones de fallo y utilizan el teorema de Bayes para determinar la probabilidad de fallo cuando se condiciona la red a unas determinadas características. Así, a través del teorema de Bayes se comparan la FDA genérica del indicador con la FDA condicionada a las roturas y se determina cuándo la probabilidad de roturas aumenta para ciertos rangos del indicador que se ha inferido como influyente en las roturas. Se determina un ratio de probabilidad (RP) que cuando es superior a la unidad permite distinguir cuándo la probabilidad de roturas incrementa para determinados intervalos del indicador. La primera parte de la metodología se aplica a la red de distribución de la Comunidad de Madrid (España) y a la red de distribución de Ciudad de Panamá (Panamá). Tras el filtrado de datos se deduce que se puede aplicar la metodología en 15 sectores en la Comunidad de Madrid y en dos sectores, llamados corregimientos, en Ciudad de Panamá. Los resultados demuestran que en las dos redes los indicadores más influyentes en la probabilidad de las roturas son el rango de la presión, que supone la diferencia entre la presión máxima y la presión mínima, y la variabilidad de la presión, que considera la propiedad estadística de la desviación típica. Se trata, por tanto, de indicadores que hacen referencia a la dispersión de los datos, a la persistencia de la variación de la presión y que se puede asimilar en resistencia de materiales a la fatiga. La segunda parte de la metodología se ha aplicado a los indicadores influyentes en la probabilidad de las roturas de la Comunidad de Madrid y se ha deducido que la probabilidad de roturas aumenta para valores extremos del indicador del rango de la presión y del indicador de la variabilidad de la presión. Finalmente, se recomienda una gestión de presiones que limite los intervalos de los indicadores influyentes en la probabilidad de roturas que incrementen dicha probabilidad. La metodología propuesta puede aplicarse a otras redes de distribución y puede ayudar a las compañías gestoras a reducir el número de fallos en el sistema a través de la gestión de presiones. This Thesis presents a methodology for the statistical analysis of pipe breaks in water distribution networks. The methodology studies the relationship between pipe breaks and water pressure, and proposes a pressure management procedure to reduce the number of breaks that occur in such networks. One of the manifestations of the deterioration of water supply systems is frequent pipe breaks. System failures are one of the major challenges faced by water utilities, due to their associated social, economic and environmental costs. For all these reasons, water utilities aim at reducing the problem of break occurrence to as great an extent as possible. Water distribution networks can be divided into areas or sectors, which facilitates the control of the network. These areas may be independent or isolated by valves, as it usually happens in developing countries. Alternatively, they can be hydraulically interconnected. The implementation of pressure management strategies is usually carried out through pressure-reducing valves (PRV). These valves are installed at the head of the sectors and, although the inflow may vary significantly, they control the downstream pressure. The most popular methods of pressure management consist of pressure reduction, which is the common form of control, pressure sustaining, prevention and/or alleviation of pressure surges or large variations in pressure, and level/altitude control. From 2005 onwards, the effects of pressure management on burst frequencies have become more widely recognized in the technical literature. This thesis suggests a pressure management that controls the pressure indicator ranges most influential on the probability of pipe breaks. Operating pressure in a sector is characterized by means of a pressure indicator at the head of the DMA, as head losses are relatively small and topographical differences were accounted for at the design stage. The pressure indicator, which may be defined as the calculated statistic from the time series of pressure head over a specific time window, may provide necessary information to help water utilities to make decisions to reduce pipe breaks in water distribution networks. The first part of the methodology presented in this Thesis provides the pressure indicators which have the greatest impact on the probability of pipe breaks to be determined. In order to know whether a pressure indicator influences the probability of pipe breaks, the proposed methodology compares estimates of cumulative distribution functions (CDFs) of a pressure indicator through consideration of two situations: when they are conditioned to the occurrence of a pipe break (a rare event), and when they are not (a normal operation). Water utilities usually have a history of failures limited to recent periods of time, and it is difficult to have access to precise information in an underground network. Therefore, the use of distribution functions to address such imprecision of recorded data is proposed. Cumulative distribution functions (CDFs) derived from the time series of pressure indicators (normal operation) and CDFs of indicator values at times coincident with a reported pipe break (conditioned to breaks) are compared. If all estimated CDFs are drawn from the same population, there is no reason to infer that the studied indicator clearly influences the probability of the rare event. However, when it is statistically proven that the estimated CDFs do not come from the same population, the analysed indicator may have an influence on the occurrence of pipe breaks. Due to the fact that the number of indicator values used to estimate the CDF conditioned to breaks is much lower in comparison with the number of indicator values to estimate the CDF of the unconditional pressure series, and that the obtained results depend on the size of the compared samples, CDFs from random sets of the same size sampled from the unconditional indicator values are estimated. Therefore, the comparison between the estimated CDFs of random sets of the indicator and the estimated CDF conditioned to breaks allows knowledge of if the indicator is influential on the probability of pipe breaks. Pressure indicators depend on various parameters. Sensitivity analysis and a robust statistical test allow determining the indicator for which these parameters result most influential on the probability of pipe breaks. At the same time, indicators can be calculated according to two model parameters, named as the anticipation time and the window width. The anticipation time refers to the time (hours) between the end of the period for the computation of the pressure indicator and the break. The window width is the number of instantaneous pressure values required to calculate the pressure indicator and is multiple of 24 hours, as water pressure has a cyclical behaviour which lasts one day. A sensitivity analysis of the model parameters explains when the pressure indicator is more influential on the probability of pipe breaks. The second part of the methodology presents a Bayesian diagnostic model. This kind of model belongs to the class of statistical predictive models, which are based on historical data, represent break behavior and patterns in water mains, and use the Bayes’ theorem to condition the probability of failure to specific system characteristics. The Bayes’ theorem allows comparing the break-conditioned FDA and the unconditional FDA of the indicators and determining when the probability of pipe breaks increases for certain pressure indicator ranges. A defined probability ratio provides a measure to establish whether the probability of breaks increases for certain ranges of the pressure indicator. The first part of the methodology is applied to the water distribution network of Madrid (Spain) and to the water distribution network of Panama City (Panama). The data filtering method suggests that the methodology can be applied to 15 sectors in Madrid and to two areas in Panama City. The results show that, in both systems, the most influential indicators on the probability of pipe breaks are the pressure range, which is the difference between the maximum pressure and the minimum pressure, and pressure variability, referred to the statistical property of the standard deviation. Therefore, they represent the dispersion of the data, the persistence of the variation in pressure and may be related to the fatigue in material resistance. The second part of the methodology has been applied to the influential indicators on the probability of pipe breaks in the water distribution network of Madrid. The main conclusion is that the probability of pipe breaks increases for the extreme values of the pressure range indicator and of the pressure variability indicator. Finally, a pressure management which limits the ranges of the pressure indicators influential on the probability of pipe breaks that increase such probability is recommended. The methodology presented here is general, may be applied to other water distribution networks, and could help water utilities reduce the number of system failures through pressure management.
Resumo:
Traffic flow time series data are usually high dimensional and very complex. Also they are sometimes imprecise and distorted due to data collection sensor malfunction. Additionally, events like congestion caused by traffic accidents add more uncertainty to real-time traffic conditions, making traffic flow forecasting a complicated task. This article presents a new data preprocessing method targeting multidimensional time series with a very high number of dimensions and shows its application to real traffic flow time series from the California Department of Transportation (PEMS web site). The proposed method consists of three main steps. First, based on a language for defining events in multidimensional time series, mTESL, we identify a number of types of events in time series that corresponding to either incorrect data or data with interference. Second, each event type is restored utilizing an original method that combines real observations, local forecasted values and historical data. Third, an exponential smoothing procedure is applied globally to eliminate noise interference and other random errors so as to provide good quality source data for future work.
Resumo:
La predicción del valor de las acciones en la bolsa de valores ha sido un tema importante en el campo de inversiones, que por varios años ha atraído tanto a académicos como a inversionistas. Esto supone que la información disponible en el pasado de la compañía que cotiza en bolsa tiene alguna implicación en el futuro del valor de la misma. Este trabajo está enfocado en ayudar a un persona u organismo que decida invertir en la bolsa de valores a través de gestión de compra o venta de acciones de una compañía a tomar decisiones respecto al tiempo de comprar o vender basado en el conocimiento obtenido de los valores históricos de las acciones de una compañía en la bolsa de valores. Esta decisión será inferida a partir de un modelo de regresión múltiple que es una de las técnicas de datamining. Para llevar conseguir esto se emplea una metodología conocida como CRISP-DM aplicada a los datos históricos de la compañía con mayor valor actual del NASDAQ.---ABSTRACT---The prediction of the value of shares in the stock market has been a major issue in the field of investments, which for several years has attracted both academics and investors. This means that the information available in the company last traded have any involvement in the future of the value of it. This work is focused on helping an investor decides to invest in the stock market through management buy or sell shares of a company to make decisions with respect to time to buy or sell based on the knowledge gained from the historic values of the shares of a company in the stock market. This decision will be inferred from a multiple regression model which is one of the techniques of data mining. To get this out a methodology known as CRISP-DM applied to historical data of the company with the highest current value of NASDAQ is used.
Resumo:
La embriogénesis es el proceso mediante el cual una célula se convierte en un ser un vivo. A lo largo de diferentes etapas de desarrollo, la población de células va proliferando a la vez que el embrión va tomando forma y se configura. Esto es posible gracias a la acción de varios procesos genéticos, bioquímicos y mecánicos que interaccionan y se regulan entre ellos formando un sistema complejo que se organiza a diferentes escalas espaciales y temporales. Este proceso ocurre de manera robusta y reproducible, pero también con cierta variabilidad que permite la diversidad de individuos de una misma especie. La aparición de la microscopía de fluorescencia, posible gracias a proteínas fluorescentes que pueden ser adheridas a las cadenas de expresión de las células, y los avances en la física óptica de los microscopios han permitido observar este proceso de embriogénesis in-vivo y generar secuencias de imágenes tridimensionales de alta resolución espacio-temporal. Estas imágenes permiten el estudio de los procesos de desarrollo embrionario con técnicas de análisis de imagen y de datos, reconstruyendo dichos procesos para crear la representación de un embrión digital. Una de las más actuales problemáticas en este campo es entender los procesos mecánicos, de manera aislada y en interacción con otros factores como la expresión genética, para que el embrión se desarrolle. Debido a la complejidad de estos procesos, estos problemas se afrontan mediante diferentes técnicas y escalas específicas donde, a través de experimentos, pueden hacerse y confrontarse hipótesis, obteniendo conclusiones sobre el funcionamiento de los mecanismos estudiados. Esta tesis doctoral se ha enfocado sobre esta problemática intentando mejorar las metodologías del estado del arte y con un objetivo específico: estudiar patrones de deformación que emergen del movimiento organizado de las células durante diferentes estados del desarrollo del embrión, de manera global o en tejidos concretos. Estudios se han centrado en la mecánica en relación con procesos de señalización o interacciones a nivel celular o de tejido. En este trabajo, se propone un esquema para generalizar el estudio del movimiento y las interacciones mecánicas que se desprenden del mismo a diferentes escalas espaciales y temporales. Esto permitiría no sólo estudios locales, si no estudios sistemáticos de las escalas de interacción mecánica dentro de un embrión. Por tanto, el esquema propuesto obvia las causas de generación de movimiento (fuerzas) y se centra en la cuantificación de la cinemática (deformación y esfuerzos) a partir de imágenes de forma no invasiva. Hoy en día las dificultades experimentales y metodológicas y la complejidad de los sistemas biológicos impiden una descripción mecánica completa de manera sistemática. Sin embargo, patrones de deformación muestran el resultado de diferentes factores mecánicos en interacción con otros elementos dando lugar a una organización mecánica, necesaria para el desarrollo, que puede ser cuantificado a partir de la metodología propuesta en esta tesis. La metodología asume un medio continuo descrito de forma Lagrangiana (en función de las trayectorias de puntos materiales que se mueven en el sistema en lugar de puntos espaciales) de la dinámica del movimiento, estimado a partir de las imágenes mediante métodos de seguimiento de células o de técnicas de registro de imagen. Gracias a este esquema es posible describir la deformación instantánea y acumulada respecto a un estado inicial para cualquier dominio del embrión. La aplicación de esta metodología a imágenes 3D + t del pez zebra sirvió para desvelar estructuras mecánicas que tienden a estabilizarse a lo largo del tiempo en dicho embrión, y que se organizan a una escala semejante al del mapa de diferenciación celular y con indicios de correlación con patrones de expresión genética. También se aplicó la metodología al estudio del tejido amnioserosa de la Drosophila (mosca de la fruta) durante el cierre dorsal, obteniendo indicios de un acoplamiento entre escalas subcelulares, celulares y supracelulares, que genera patrones complejos en respuesta a la fuerza generada por los esqueletos de acto-myosina. En definitiva, esta tesis doctoral propone una estrategia novedosa de análisis de la dinámica celular multi-escala que permite cuantificar patrones de manera inmediata y que además ofrece una representación que reconstruye la evolución de los procesos como los ven las células, en lugar de como son observados desde el microscopio. Esta metodología por tanto permite nuevas formas de análisis y comparación de embriones y tejidos durante la embriogénesis a partir de imágenes in-vivo. ABSTRACT The embryogenesis is the process from which a single cell turns into a living organism. Through several stages of development, the cell population proliferates at the same time the embryo shapes and the organs develop gaining their functionality. This is possible through genetic, biochemical and mechanical factors that are involved in a complex interaction of processes organized in different levels and in different spatio-temporal scales. The embryogenesis, through this complexity, develops in a robust and reproducible way, but allowing variability that makes possible the diversity of living specimens. The advances in physics of microscopes and the appearance of fluorescent proteins that can be attached to expression chains, reporting about structural and functional elements of the cell, have enabled for the in-vivo observation of embryogenesis. The imaging process results in sequences of high spatio-temporal resolution 3D+time data of the embryogenesis as a digital representation of the embryos that can be further analyzed, provided new image processing and data analysis techniques are developed. One of the most relevant and challenging lines of research in the field is the quantification of the mechanical factors and processes involved in the shaping process of the embryo and their interactions with other embryogenesis factors such as genetics. Due to the complexity of the processes, studies have focused on specific problems and scales controlled in the experiments, posing and testing hypothesis to gain new biological insight. However, methodologies are often difficult to be exported to study other biological phenomena or specimens. This PhD Thesis is framed within this paradigm of research and tries to propose a systematic methodology to quantify the emergent deformation patterns from the motion estimated in in-vivo images of embryogenesis. Thanks to this strategy it would be possible to quantify not only local mechanisms, but to discover and characterize the scales of mechanical organization within the embryo. The framework focuses on the quantification of the motion kinematics (deformation and strains), neglecting the causes of the motion (forces), from images in a non-invasive way. Experimental and methodological challenges hamper the quantification of exerted forces and the mechanical properties of tissues. However, a descriptive framework of deformation patterns provides valuable insight about the organization and scales of the mechanical interactions, along the embryo development. Such a characterization would help to improve mechanical models and progressively understand the complexity of embryogenesis. This framework relies on a Lagrangian representation of the cell dynamics system based on the trajectories of points moving along the deformation. This approach of analysis enables the reconstruction of the mechanical patterning as experienced by the cells and tissues. Thus, we can build temporal profiles of deformation along stages of development, comprising both the instantaneous events and the cumulative deformation history. The application of this framework to 3D + time data of zebrafish embryogenesis allowed us to discover mechanical profiles that stabilized through time forming structures that organize in a scale comparable to the map of cell differentiation (fate map), and also suggesting correlation with genetic patterns. The framework was also applied to the analysis of the amnioserosa tissue in the drosophila’s dorsal closure, revealing that the oscillatory contraction triggered by the acto-myosin network organized complexly coupling different scales: local force generation foci, cellular morphology control mechanisms and tissue geometrical constraints. In summary, this PhD Thesis proposes a theoretical framework for the analysis of multi-scale cell dynamics that enables to quantify automatically mechanical patterns and also offers a new representation of the embryo dynamics as experienced by cells instead of how the microscope captures instantaneously the processes. Therefore, this framework enables for new strategies of quantitative analysis and comparison between embryos and tissues during embryogenesis from in-vivo images.
Resumo:
La gran cantidad de datos que se registran diariamente en los sistemas de base de datos de las organizaciones ha generado la necesidad de analizarla. Sin embargo, se enfrentan a la complejidad de procesar enormes volúmenes de datos a través de métodos tradicionales de análisis. Además, dentro de un contexto globalizado y competitivo las organizaciones se mantienen en la búsqueda constante de mejorar sus procesos, para lo cual requieren herramientas que les permitan tomar mejores decisiones. Esto implica estar mejor informado y conocer su historia digital para describir sus procesos y poder anticipar (predecir) eventos no previstos. Estos nuevos requerimientos de análisis de datos ha motivado el desarrollo creciente de proyectos de minería de datos. El proceso de minería de datos busca obtener desde un conjunto masivo de datos, modelos que permitan describir los datos o predecir nuevas instancias en el conjunto. Implica etapas de: preparación de los datos, procesamiento parcial o totalmente automatizado para identificar modelos en los datos, para luego obtener como salida patrones, relaciones o reglas. Esta salida debe significar un nuevo conocimiento para la organización, útil y comprensible para los usuarios finales, y que pueda ser integrado a los procesos para apoyar la toma de decisiones. Sin embargo, la mayor dificultad es justamente lograr que el analista de datos, que interviene en todo este proceso, pueda identificar modelos lo cual es una tarea compleja y muchas veces requiere de la experiencia, no sólo del analista de datos, sino que también del experto en el dominio del problema. Una forma de apoyar el análisis de datos, modelos y patrones es a través de su representación visual, utilizando las capacidades de percepción visual del ser humano, la cual puede detectar patrones con mayor facilidad. Bajo este enfoque, la visualización ha sido utilizada en minería datos, mayormente en el análisis descriptivo de los datos (entrada) y en la presentación de los patrones (salida), dejando limitado este paradigma para el análisis de modelos. El presente documento describe el desarrollo de la Tesis Doctoral denominada “Nuevos Esquemas de Visualizaciones para Mejorar la Comprensibilidad de Modelos de Data Mining”. Esta investigación busca aportar con un enfoque de visualización para apoyar la comprensión de modelos minería de datos, para esto propone la metáfora de modelos visualmente aumentados. ABSTRACT The large amount of data to be recorded daily in the systems database of organizations has generated the need to analyze it. However, faced with the complexity of processing huge volumes of data over traditional methods of analysis. Moreover, in a globalized and competitive environment organizations are kept constantly looking to improve their processes, which require tools that allow them to make better decisions. This involves being bettered informed and knows your digital story to describe its processes and to anticipate (predict) unanticipated events. These new requirements of data analysis, has led to the increasing development of data-mining projects. The data-mining process seeks to obtain from a massive data set, models to describe the data or predict new instances in the set. It involves steps of data preparation, partially or fully automated processing to identify patterns in the data, and then get output patterns, relationships or rules. This output must mean new knowledge for the organization, useful and understandable for end users, and can be integrated into the process to support decision-making. However, the biggest challenge is just getting the data analyst involved in this process, which can identify models is complex and often requires experience not only of the data analyst, but also the expert in the problem domain. One way to support the analysis of the data, models and patterns, is through its visual representation, i.e., using the capabilities of human visual perception, which can detect patterns easily in any context. Under this approach, the visualization has been used in data mining, mostly in exploratory data analysis (input) and the presentation of the patterns (output), leaving limited this paradigm for analyzing models. This document describes the development of the doctoral thesis entitled "New Visualizations Schemes to Improve Understandability of Data-Mining Models". This research aims to provide a visualization approach to support understanding of data mining models for this proposed metaphor visually enhanced models.
Resumo:
PURPOSE The decision-making process plays a key role in organizations. Every decision-making process produces a final choice that may or may not prompt action. Recurrently, decision makers find themselves in the dichotomous question of following a traditional sequence decision-making process where the output of a decision is used as the input of the next stage of the decision, or following a joint decision-making approach where several decisions are taken simultaneously. The implication of the decision-making process will impact different players of the organization. The choice of the decision- making approach becomes difficult to find, even with the current literature and practitioners’ knowledge. The pursuit of better ways for making decisions has been a common goal for academics and practitioners. Management scientists use different techniques and approaches to improve different types of decisions. The purpose of this decision is to use the available resources as well as possible (data and techniques) to achieve the objectives of the organization. The developing and applying of models and concepts may be helpful to solve managerial problems faced every day in different companies. As a result of this research different decision models are presented to contribute to the body of knowledge of management science. The first models are focused on the manufacturing industry and the second part of the models on the health care industry. Despite these models being case specific, they serve the purpose of exemplifying that different approaches to the problems and could provide interesting results. Unfortunately, there is no universal recipe that could be applied to all the problems. Furthermore, the same model could deliver good results with certain data and bad results for other data. A framework to analyse the data before selecting the model to be used is presented and tested in the models developed to exemplify the ideas. METHODOLOGY As the first step of the research a systematic literature review on the joint decision is presented, as are the different opinions and suggestions of different scholars. For the next stage of the thesis, the decision-making process of more than 50 companies was analysed in companies from different sectors in the production planning area at the Job Shop level. The data was obtained using surveys and face-to-face interviews. The following part of the research into the decision-making process was held in two application fields that are highly relevant for our society; manufacturing and health care. The first step was to study the interactions and develop a mathematical model for the replenishment of the car assembly where the problem of “Vehicle routing problem and Inventory” were combined. The next step was to add the scheduling or car production (car sequencing) decision and use some metaheuristics such as ant colony and genetic algorithms to measure if the behaviour is kept up with different case size problems. A similar approach is presented in a production of semiconductors and aviation parts, where a hoist has to change from one station to another to deal with the work, and a jobs schedule has to be done. However, for this problem simulation was used for experimentation. In parallel, the scheduling of operating rooms was studied. Surgeries were allocated to surgeons and the scheduling of operating rooms was analysed. The first part of the research was done in a Teaching hospital, and for the second part the interaction of uncertainty was added. Once the previous problem had been analysed a general framework to characterize the instance was built. In the final chapter a general conclusion is presented. FINDINGS AND PRACTICAL IMPLICATIONS The first part of the contributions is an update of the decision-making literature review. Also an analysis of the possible savings resulting from a change in the decision process is made. Then, the results of the survey, which present a lack of consistency between what the managers believe and the reality of the integration of their decisions. In the next stage of the thesis, a contribution to the body of knowledge of the operation research, with the joint solution of the replenishment, sequencing and inventory problem in the assembly line is made, together with a parallel work with the operating rooms scheduling where different solutions approaches are presented. In addition to the contribution of the solving methods, with the use of different techniques, the main contribution is the framework that is proposed to pre-evaluate the problem before thinking of the techniques to solve it. However, there is no straightforward answer as to whether it is better to have joint or sequential solutions. Following the proposed framework with the evaluation of factors such as the flexibility of the answer, the number of actors, and the tightness of the data, give us important hints as to the most suitable direction to take to tackle the problem. RESEARCH LIMITATIONS AND AVENUES FOR FUTURE RESEARCH In the first part of the work it was really complicated to calculate the possible savings of different projects, since in many papers these quantities are not reported or the impact is based on non-quantifiable benefits. The other issue is the confidentiality of many projects where the data cannot be presented. For the car assembly line problem more computational power would allow us to solve bigger instances. For the operation research problem there was a lack of historical data to perform a parallel analysis in the teaching hospital. In order to keep testing the decision framework it is necessary to keep applying more case studies in order to generalize the results and make them more evident and less ambiguous. The health care field offers great opportunities since despite the recent awareness of the need to improve the decision-making process there are many opportunities to improve. Another big difference with the automotive industry is that the last improvements are not spread among all the actors. Therefore, in the future this research will focus more on the collaboration between academia and the health care sector.
Resumo:
Over the last few years, the Data Center market has increased exponentially and this tendency continues today. As a direct consequence of this trend, the industry is pushing the development and implementation of different new technologies that would improve the energy consumption efficiency of data centers. An adaptive dashboard would allow the user to monitor the most important parameters of a data center in real time. For that reason, monitoring companies work with IoT big data filtering tools and cloud computing systems to handle the amounts of data obtained from the sensors placed in a data center.Analyzing the market trends in this field we can affirm that the study of predictive algorithms has become an essential area for competitive IT companies. Complex algorithms are used to forecast risk situations based on historical data and warn the user in case of danger. Considering that several different users will interact with this dashboard from IT experts or maintenance staff to accounting managers, it is vital to personalize it automatically. Following that line of though, the dashboard should only show relevant metrics to the user in different formats like overlapped maps or representative graphs among others. These maps will show all the information needed in a visual and easy-to-evaluate way. To sum up, this dashboard will allow the user to visualize and control a wide range of variables. Monitoring essential factors such as average temperature, gradients or hotspots as well as energy and power consumption and savings by rack or building would allow the client to understand how his equipment is behaving, helping him to optimize the energy consumption and efficiency of the racks. It also would help him to prevent possible damages in the equipment with predictive high-tech algorithms.
Resumo:
Esta dissertação busca discutir a alienação do homem contemporâneo e avaliar diferentes caminhos científicos para seu estudo. Foram descritos diferentes momentos históricos que reforçaram a alienação do trabalhador e avaliadas três técnicas de pesquisa, para entender qual seria a mais indicada para a percepção da questão. As técnicas são a história oral, a pesquisa de levantamento - técnica de Survey e a observação participante. A pesquisa de campo permite inferir pela análise dos dados que a história oral temática possibilitou a auto-reflexão dos sujeitos, apontando-se um caminho à des-alienação e no encontro da autenticidade da pessoa.(AU)
Resumo:
Esta dissertação busca discutir a alienação do homem contemporâneo e avaliar diferentes caminhos científicos para seu estudo. Foram descritos diferentes momentos históricos que reforçaram a alienação do trabalhador e avaliadas três técnicas de pesquisa, para entender qual seria a mais indicada para a percepção da questão. As técnicas são a história oral, a pesquisa de levantamento - técnica de Survey e a observação participante. A pesquisa de campo permite inferir pela análise dos dados que a história oral temática possibilitou a auto-reflexão dos sujeitos, apontando-se um caminho à des-alienação e no encontro da autenticidade da pessoa.(AU)
Resumo:
Considerando explicações sobre o fenômeno polinização a partir de narrativas biológicas, este estudo foi norteado pela seguinte pergunta: até que ponto alguns termos, aparentemente finalistas, podem ser usados em textos científicos sem que ocorra um prejuízo no entendimento de questões ontogenéticas e filogenéticas? Diante esta questão, os objetivos desta pesquisa foram: i) apresentar uma discussão sobre as explicações funcionais na biologia, especificamente em relação ao fenômeno polinização e ii) contribuir para reflexões epistemológicas no ensino de Biologia. Foram selecionados dois filósofos para definições e análises sobre linguagens funcionais, Larry Wright e Robert Cummins. Para análise dos textos científicos sobre o fenômeno polinização, foi realizado o recorte de dois momentos históricos, um do século XVIII, quando se iniciou os estudos sobre polinização, e outro do século XIX, quando a teoria da evolução estava em discussão. As duas interpretações filosóficas defendem, embora de uma maneira distinta, a existência de uma ideia explanatória do conceito de função para a biologia. A concepção de Larry Wright (1973) sustenta que a função explica por que algo existe e a de Robert Cummins (1975) considera que o poder explicativo da função está na avaliação de sua contribuição para o sistema do qual faz parte, não sendo relevante para sua compreensão a informação sobre sua origem evolutiva. As duas obras científicas primárias selecionadas para análises, de Christian Sprengel (1750-1816) e Charles Darwin (1809-1882), apresentaram alguns termos aparentemente finalistas, ou seja, com conotação de caráter teleológico. A análise dos dados permite dizer que a questão sobre função na biologia é bastante inquietante. Tanto a ciência quanto a filosofia estão em processos de desvelar quais as melhores formas de tratamento de termos finalistas que satisfaçam os problemas de seu uso sem que ocorra um prejuízo no entendimento das questões evolutivas do fenômeno estudado. Este estudo sugere uma redução do uso de termos teleológicos em textos científicos, uma vez que há diferentes visões sobre este conceito, o que pode gerar interpretações incorretas. Além disso, as implicações deste estudo para a Didática da Biologia são apresentadas por meio de inserções filosóficas-epistemológicas em aulas de Biologia com o intuito de permitir o desenvolvimento dos conteúdos biológicos de forma mais reflexiva e contextualizada.