974 resultados para Great Britain. Parliament. House of Commons.
Resumo:
Welfare to work has received less attention in devolution studies than other policy sectors. Drawing on Hall’s (1993) ‘orders of change’ model as an analytical framework, this paper addresses this deficit. The devolution settlement and constitutional question in Northern Ireland limit the likelihood of radical departure from ‘parity’ with Great Britain but differences are emerging.
Resumo:
Against the current backdrop of deteriorating economic and financial conditions we consider recent trends and current prospects for credit unions in Great Britain. We note that although credit unions have experienced solid membership and asset growth there are clouds on the horizon. Bad debts and loan arrears are on the rise and may be linked to recent legislative amendments and the increasing use by Government of credit unions as a mechanism to achieve its financial inclusion goals. Whatever the reason, the deterioration in the loan book needs to be quickly addressed, or it will ultimately result in either more government bailouts or a stream of failing credit unions.
Resumo:
(with C. N. Doe).
Resumo:
(With C. N. Doe.)
Resumo:
(With C.N. Doe.)
Resumo:
The seminal work of Lipset and Rokkan, which explores how party systems evolved organically from nineteenth-century roots, has generally been applied in states which have enjoyed a long-standing territorial identity. Their model's emphasis on stability and predictability can, however, be reconciled with circumstances where the very identity of the state itself is an issue. This article explores the capacity of the model to explain party divisions in three nested contexts: the pre-1922 United Kingdom, which encountered problems with its Celtic peripheries, and especially with Ireland; independent Ireland, where a unique party system developed, largely in response to a broader historical and geographical context; and Northern Ireland, where party politics fossilised in the 1880s, and began to unfreeze only in the 1970s. The article argues that the Lipset–Rokkan model casts valuable light on these processes, which in turn contribute to the theoretical richness of the model.
Resumo:
1. We tested the species diversity-energy hypothesis using the British bird fauna. This predicts that temperature patterns should match diversity patterns. We also tested the hypothesis that the mechanism operates directly through effects of temperature on thermoregulatory loads; this further predicts that seasonal changes in temperature cause matching changes in patterns of diversity, and that species' body mass is influential.
2. We defined four assemblages using migration status (residents or visitors) and season (summer or winter distribution). Records of species' presence/absence in a total of 2362, 10 x 10-km, quadrats covering most of Britain were used, together with a wide selection of habitat, topographic and seasonal climatic data.
3. We fitted a logistic regression model to each species' distribution using the environmental data. We then combined these individual species models mathematically to form a diversity model. Analysis of this composite model revealed that summer temperature was the factor most strongly associated with diversity.
4. Although the species-energy hypothesis was supported, the direct mechanism, predicting an important role for body mass and matching seasonal patterns of change between diversity and temperature, was not supported.
5. However, summer temperature is the best overall explanation for bird diversity patterns in Britain. It is a better predictor of winter diversity than winter temperature. Winter diversity is predicted more precisely from environmental factors than summer diversity.
6. Climate change is likely to influence the diversity of different areas to different extents; for resident species, low diversity areas may respond more strongly as climate change progresses. For winter visitors, higher diversity areas may respond more strongly, while summer visitors are approximately neutral.
Resumo:
Diploid (2n = 2x = 20) and triploid (2n = 3x = 30) Fasciola hepatica have been reported in the UK, and in Asia diploid, triploid and mixoploid (2x/3x) Fasciola spp. exist but there is little information to indicate how common triploidy is, particularly in UK fluke. Here the ploidy of 565 adult F. hepatica from 66 naturally infected British sheep and 150 adult F. hepatica from 35 naturally infected British cattle was determined. All 715 of these parasites were diploid, based on observation of 10 bivalent chromosomes and sperm (n = 335) or, since triploids are aspermic, sperm alone (n = 380). This constitutes the first extensive analysis of the ploidy of F. hepatica field isolates from Great Britain and shows that most F. hepatica isolated from cattle and sheep are diploid and have the capacity to sexually reproduce. These data suggest that triploidy, and by extension parthenogenesis, is rare or non-existent in wild British F. hepatica populations. Given that F. hepatica is the only species of Fasciola present in Britain our results indicate that the parasite is predominantly diploid in areas where F. hepatica exists in isolation and suggests that triploidy may only originate in natural populations where co-infection of F. hepatica and its sister species Fasciola gigantica commonly occurs.
Resumo:
Insects migrating over two sites in southern UK (Malvern in Worcestershire, and Harpenden in Hertfordshire) have been monitored continuously with nutating vertical-looking radars (VLRs) equipped with powerful control and analysis software. These observations make possible, for the first time, a systematic investigation of the vertical distribution of insect aerial density in the atmosphere, over temporal scales ranging from the short (instantaneous vertical profiles updated every 15 min) to the very long (profiles aggregated over whole seasons or even years). In the present paper, an outline is given of some general features of insect stratification as revealed by the radars, followed by a description of occasions during warm nights in the summer months when intense insect layers developed. Some of these nocturnal layers were due to the insects flying preferentially at the top of strong surface temperature inversions, and in other cases, layering was associated with higher-altitude temperature maxima, such as those due to subsidence inversions. The layers were formed from insects of a great variety of sizes, but peaks in the mass distributions pointed to a preponderance of medium-sized noctuid moths on certain occasions.