979 resultados para Gonodactylus Chiragra (crustacea)
Resumo:
In arctic populations of Macrothrix hirsuticornis life cycles are mainly governed by temperature. This was found by using laboratory cultures in combination with the analysis of population samples from waters in Svalbard. In arctic waters ex-ephippio-++ usually produce gamogenetic F1-++ together with a high percentage of oo, which have to fertilize the resting eggs. Temperatures around 14°C, which are very rare in waters of Svalbard, will induce parthenogenetic oo in the F1 and even the F2-generation, a mode of reproduction normally found in Macrothrix-populations of Central Europe. This was found in laboratory cultures of M. hirsuticornis from Bear Island, and there was evidence, that a similar cycle occurs in warm wells in Spitsbergen. The arctic distribution of M. hirsuticornis mainly depends on temperature, which regulates the speed of individual development. But this can only be understood together with the length of time, during which suitable life conditions are given. Physiological adaptations to life in waters in high latitudes could not be found, in spite of the extreme northern occurrence of M. hirsuticornis.
Resumo:
This paper constitutes a first detailed and systematic facies and biota description of an isolated carbonate knoll (Pee Shoal) in the Timor Sea (Sahul Shelf, NW Australia). The steep and flat-topped knoll is characterized by a distinct facies zonation comprising (A) soft sediments with scattered debris and scarce sponges, hydrozoans and crinoids (320-210 m water depth), (B) hardground outcrops (step-like banks, vertical cliffs) that are mainly colonized by octocorals and sponges (210-75 m), and (C) the summit region (75-21 m) where the slopes merge gently into the flat-topped summit that is densely colonized by massive and encrusting zooxanthellate corals and the octocoral Heliopora coerulea. In contrast, the sediments recovered from the summit are dominated by the green alga Halimeda, subordinate components are corals, benthic foraminifers, mollusks, and coralline red algae. Thus, the sediments are classified as chlorozoan grain assemblage. However, non-skeletal grains (fecal pellets, ooids) are almost completely absent. This discrepancy between the living biota and the sediment composition could reflect a disruption by the severe tropical cyclone Ingrid that hit the northern Australian shelf in March 2005, just before the sampling for this study took place (September 2005).
Resumo:
In order to examine the long-term development of offshore macrozoobenthic soft-bottom communities of the German Bight, four representative permanent stations (MZB-SSd, -FSd, -Slt, -WB) have been sampled continuously since 1969. Inter-annual variability and possible long-term trends were analysed based on spring-time samples from 1969 until 2000. This is part of the ecological long-term series of the AWI and is supplemented by periodic large-scale mapping of the benthos. The main factors influencing the development of the benthic communities are biological interactions, climate, food supply (eutrophication) and the disturbance regime. The most frequent disturbances are sediment relocations during strong storms or by bottom trawling, while occasional oxygen deficiencies and extremely cold winters are important disturbance events working on a much larger scale. Benthic communities at the sampling stations show a large inter-annual variability combined with a variation on a roughly decadal scale. In accordance with large-scale system shifts reported for the North Sea, benthic community transitions occurred between roughly the 1970ies, 80ies and 90ies. The transitions between periods are not distinctly marked by strong changes but rather reflected in gradual changes of the species composition and dominance structure.
Resumo:
The Long-Term Ecological Research (LTER) observatory HAUSGARTEN, in the eastern Fram Strait, provides us the valuable ability to study the composition of benthic megafaunal communities through the analysis of seafloor photographs. This, in combination with extensive sampling campaigns, which have yielded a unique data set on faunal, bacterial, biogeochemical and geological properties, as well as on hydrography and sedimentation patterns, allows us to address the question of why variations in megafaunal community structure and species distribution exist within regional (60-110 km) and local (<4 km) scales. Here, we present first results from the latitudinal HAUSGARTEN gradient, consisting of three different stations (N3, HG-IV, S3) between 78°30'N and 79°45'N (2351 - 2788 m depth), obtained via the analysis of images acquired by a towed camera (OFOS - Ocean Floor Observation System) in 2011. We assess variability in megafaunal densities, species composition and diversity as well as biotic and biogenic habitat features, which may cause the patterns observed. While there were significant regional-scale differences in megafaunal composition and densities between the stations (N3 = 26.74 ± 0.63; HG-IV = 11.21 ± 0.25; S3 = 18.34 ± 0.39 individuals/m**2), significant local differences were only found at HG-IV. Regional-scale variations may be due to the significant differences in ice coverage at each station as well as the different quantities of protein available, whereas local-scale differences at HG-IV may be a result of variation in bottom topography or factors not yet identified.
Resumo:
Brachyuran and anomuran decapod crabs do not occur in the extremely cold waters of the Antarctic continental shelf whereas caridean and other shrimp-like decapods, amphipods and isopods are highly abundant. Differing capacities for extracellular ion regulation, especially concerning magnesium, have been hypothesised to determine cold tolerance and by that the biogeography of Antarctic crustaceans. Magnesium is known to have a paralysing effect, which is even more distinct in the cold. As only few or no data exist on haemolymph ionic composition of Sub-Antarctic and Antarctic crustaceans, haemolymph samples of 12 species from these regions were analysed for the concentrations of major inorganic ions (Na+, K+, Ca2+, Mg2+, Cl-, SO4 2-) by ion chromatography. Cation relationships guaranteed neuromuscular excitability in all species. Sulphate and potassium correlated positively with magnesium concentration. The Antarctic caridean decapod as well as the amphipods maintained low (6-20% of ambient sea water magnesium concentration), Sub-Antarctic brachyuran and anomuran crabs as well as the Antarctic isopods high (54-96% of ambient sea water magnesium concentration) haemolymph magnesium levels. In conclusion, magnesium regulation may explain the biogeography of decapods, but not that of the peracarids.