989 resultados para Geochemical prospecting.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The geochemical fingerprint of sediment retrieved from the banks of the River Manzanares as it passes through the City of Madrid is presented here. The river collects the effluent water from several Waste Water Treatment (WWT) plants in and around the city, such that, at low flows, up to 60% of the flow has been treated. A total of 18 bank-sediment cores were collected along the course of the river, down to its confluence with the Jarama river, to the south–east of Madrid. Trace and major elements in each sample were extracted following a double protocol: (a) “Total” digestion with HNO3, HClO4 and HF; (b) “Weak” digestion with sodium acetate buffered to pH=5 with acetic acid, under constant stirring. The digests thus obtained were subsequently analysed by ICP-AES, except for Hg which was extracted with aqua regia and sodium chloride-hydroxylamine sulfate, and analysed by Cold Vapour-AAS. X-ray diffraction was additionally employed to determine the mineralogical composition of the samples. Uni- and multivariate analyses of the chemical data reveal the influence of Madrid on the geochemistry of Manzanares' sediments, clearly manifested by a marked increase in the concentration of typically “urban” elements Ag, Cr, Cu, Pb and Zn, downstream of the intersection of the river with the city's perimeter. The highest concentrations of these elements appear to be associated with illegal or accidental dumping of waste materials, and with the uncontrolled incorporation of untreated urban runoff to the river. The natural matrix of the sediment is characterised by fairly constant concentrations of Ce, La and Y, whereas changes in the lithology intersected by the river cause corresponding variations in Ca–Mg and Al–Na contents. In the final stretch of the river, the presence of carbonate materials seems to exert a strong geochemical control on the amount of Zn and, to a lesser extent, Cu immobilised in the sediments. This fact suggests that a variable but significant proportion of both elements may be susceptible to reincorporation in the aqueous phase under realistic environmental conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CO2 capture and storage (CCS) projects are presently developed to reduce the emission of anthropogenic CO2 into the atmosphere. CCS technologies are expected to account for the 20% of the CO2 reduction by 2050. One of the main concerns of CCS is whether CO2 may remain confined within the geological formation into which it is injected since post-injection CO2 migration in the time scale of years, decades and centuries is not well understood. Theoretically, CO2 can be retained at depth i) as a supercritical fluid (physical trapping), ii) as a fluid slowly migrating in an aquifer due to long flow path (hydrodynamic trapping), iii) dissolved into ground waters (solubility trapping) and iv) precipitated secondary carbonates. Carbon dioxide will be injected in the near future (2012) at Hontomín (Burgos, Spain) in the frame of the Compostilla EEPR project, led by the Fundación Ciudad de la Energía (CIUDEN). In order to detect leakage in the operational stage, a pre-injection geochemical baseline is presently being developed. In this work a geochemical monitoring design is presented to provide information about the feasibility of CO2 storage at depth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the results of a geochemical and isotopic survey of 37 gas discharges was carried out in continental Spain are presented and discussed. On the basis of the gas chemical composition, four different areas can be distinguished, as follows: 1) Selva-Emborda (SE) region; 2) Guadalentin Valley (GV); 3) Campo de Calatrava (CC) and 3) the inner part of Spain (IS). The SE, GV and CC areas are characterized by CO2-rich gases, while IS has N2 as main gas compound. The CO2-rich gases can be distinguished at their turn on the basis on the helium and carbon isotopic composition. The SE and CC areas have a strong mantle signature (up to 3 Ra). Nevertheless, the carbon isotopic composition of CC is within the mantle range and that of SE is slightly more negative (down to -8‰ PDB). The GV gases have a lower mantle signature (61 Ra) with respect to SE and CC and more negative carbon isotopes (6-10‰ PDB). It is worth to mention that the SE, GV and CC areas are related to the youngest volcanic activity in continental Spain, for example the Garrotxa Volcanic Field in Catalonia records the latest event dated at 10,000 years, and the isotopic features, particularly those of helium, are suggesting the presence of magmatic bodies still cooling at depth. The N2-rich gases, i.e. those from the IS area, has an atmospheric origin, as highlighted by the N2/Ar ratio that ranges between those of air and ASW (Air Saturated Water). The isotopic composition of carbon is distinctly negative (down to -21‰ PDB) and that of helium is typically crustal (0.02-0.08 Ra), confirming that these gas discharges are related to a relatively shallow source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the very first geochemical and isotopic data related to surface and spring waters and dissolved gases in the area of Hontomín-Huermeces (Burgos, Spain) are presented and discussed. Hontomín-Huermeces was selected as a pilot site for the injection of pure (>99 %) CO2. Injection and monitoring wells are planned to be drilled close to 6 oil wells completed in the 1980’s. Stratigraphical logs indicate the presence of a confined saline aquifer at the depth of about 1,500 m into which less than 100,000 tons of liquid CO2 will be injected, possibly starting in 2013. The chemical and isotopic features of the spring waters suggest the occurrence of a shallow aquifer having a Ca2+(Mg2+)-HCO3- composition, relatively low salinity (Total Dissolved Solids _800 mg/L) and a meteoric isotopic signature. Some spring waters close to the oil wells are characterized by relatively high concentrations of NO3- (up to 123 mg/L), unequivocally indicating anthropogenic contamination that adds to the main water-rock interaction processes. The latter can be referred to Ca-Mg-carbonate and, at a minor extent, Al-silicate dissolution, being the outcropping sedimentary rocks characterized by Palaeozoic to Quaternary rocks. Anomalous concentrations of Cl-, SO42-, As, B and Ba were measured in two springs discharging a few hundreds meters from the oil wells and in the Rio Ubierna, possibly indicative of mixing processes, although at very low extent, between deep and shallow aquifers. Gases dissolved in spring waters show relatively high concentrations of atmospheric species, such as N2, O2 and Ar, and isotopically negative CO2 (<-17.7 h V-PDB), likely related to a biogenic source, possibly masking any contribution related to a deep source. The geochemical and isotopic data of this study are of particular importance when a monitoring program will be established to verify whether CO2 leakages, induced by the injection of this greenhouse gas, may affect the quality of the waters of the shallow Hontomín-Huermeces hydrological circuit. In this respect, carbonate chemistry, the isotopic carbon of dissolved CO2 and TDIC (Total Dissolved Inorganic Carbon) and selected trace elements can be considered as useful parameters to trace the migration of the injected CO2 into near-surface environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geological, geophysical, and geochemical data support a theory that Earth experienced several intervals of intense, global glaciation (“snowball Earth” conditions) during Precambrian time. This snowball model predicts that postglacial, greenhouse-induced warming would lead to the deposition of banded iron formations and cap carbonates. Although global glaciation would have drastically curtailed biological productivity, melting of the oceanic ice would also have induced a cyanobacterial bloom, leading to an oxygen spike in the euphotic zone and to the oxidative precipitation of iron and manganese. A Paleoproterozoic snowball Earth at 2.4 Giga-annum before present (Ga) immediately precedes the Kalahari Manganese Field in southern Africa, suggesting that this rapid and massive change in global climate was responsible for its deposition. As large quantities of O2 are needed to precipitate this Mn, photosystem II and oxygen radical protection mechanisms must have evolved before 2.4 Ga. This geochemical event may have triggered a compensatory evolutionary branching in the Fe/Mn superoxide dismutase enzyme, providing a Paleoproterozoic calibration point for studies of molecular evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current status of geochemical and groundwater observations for earthquake prediction in Japan is described. The development of the observations is discussed in relation to the progress of the earthquake prediction program in Japan. Three major findings obtained from our recent studies are outlined. (i) Long-term radon observation data over 18 years at the SKE (Suikoen) well indicate that the anomalous radon change before the 1978 Izu-Oshima-kinkai earthquake can with high probability be attributed to precursory changes. (ii) It is proposed that certain sensitive wells exist which have the potential to detect precursory changes. (iii) The appearance and nonappearance of coseismic radon drops at the KSM (Kashima) well reflect changes in the regional stress state of an observation area. In addition, some preliminary results of chemical changes of groundwater prior to the 1995 Kobe (Hyogo-ken nanbu) earthquake are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compositional and chemical analyses suggest that Middle Triassic–Lower Liassic continental redbeds (in the internal domains of the Betic, Maghrebian, and Apenninic chains) can be considered a regional lithosome marking the Triassic-Jurassic rift-valley stage of Tethyan rifting, which led to the Pangaea breakup and subsequent development of a mosaic of plates and microplates. Sandstones are quartzose to quartzolithic and represent a provenance of continental block and recycled orogen, made up mainly of Paleozoic metasedimentary rocks similar to those underlying the redbeds. Mudrocks display K enrichments; intense paleoweathering under a hot, episodically humid climate with a prolonged dry season; and sediment recycling. Redbeds experienced temperatures in the range of 100°–160°C and lithostatic/tectonic loading of more than 4 km. These redbeds represent an important stratigraphic signature to reconstruct a continental block (Mesomediterranean Microplate) that separated different realms of the western Tethys from Middle-Late Jurassic to Miocene, when it was completely involved in Alpine orogenesis.