982 resultados para Genetic Epidemiology
Resumo:
Parallel execution of computational mechanics codes requires efficient mesh-partitioning techniques. These mesh-partitioning techniques divide the mesh into specified number of submeshes of approximately the same size and at the same time, minimise the interface nodes of the submeshes. This paper describes a new mesh partitioning technique, employing Genetic Algorithms. The proposed algorithm operates on the deduced graph (dual or nodal graph) of the given finite element mesh rather than directly on the mesh itself. The algorithm works by first constructing a coarse graph approximation using an automatic graph coarsening method. The coarse graph is partitioned and the results are interpolated onto the original graph to initialise an optimisation of the graph partition problem. In practice, hierarchy of (usually more than two) graphs are used to obtain the final graph partition. The proposed partitioning algorithm is applied to graphs derived from unstructured finite element meshes describing practical engineering problems and also several example graphs related to finite element meshes given in the literature. The test results indicate that the proposed GA based graph partitioning algorithm generates high quality partitions and are superior to spectral and multilevel graph partitioning algorithms.
Resumo:
An efficient strategy for identification of delamination in composite beams and connected structures is presented. A spectral finite-element model consisting of a damaged spectral element is used for model-based prediction of the damaged structural response in the frequency domain. A genetic algorithm (GA) specially tailored for damage identification is derived and is integrated with finite-element code for automation. For best application of the GA, sensitivities of various objective functions with respect to delamination parameters are studied and important conclusions are presented. Model-based simulations of increasing complexity illustrate some of the attractive features of the strategy in terms of accuracy as well as computational cost. This shows the possibility of using such strategies for the development of smart structural health monitoring softwares and systems.
Resumo:
The decision-making process for machine-tool selection and operation allocation in a flexible manufacturing system (FMS) usually involves multiple conflicting objectives. Thus, a fuzzy goal-programming model can be effectively applied to this decision problem. The paper addresses application of a fuzzy goal-programming concept to model the problem of machine-tool selection and operation allocation with explicit considerations given to objectives of minimizing the total cost of machining operation, material handling and set-up. The constraints pertaining to the capacity of machines, tool magazine and tool life are included in the model. A genetic algorithm (GA)-based approach is adopted to optimize this fuzzy goal-programming model. An illustrative example is provided and some results of computational experiments are reported.
Resumo:
Sandalwood is an economically important aromatic tree belonging to the family Santalaceae. The trees are used mainly for their fragrant heartwood and oil that have immense potential for foreign exchange. Very little information is available on the genetic diversity in this species. Hence studies were initiated and genetic diversity estimated using RAPD markers in 51 genotypes of Santalum album procured from different geographcial regions of India and three exotic lines of S. spicatum from Australia. Eleven selected Operon primers (10mer) generated a total of 156 consistent and unambiguous amplification products ranging from 200bp to 4kb. Rare and genotype specific bands were identified which could be effectively used to distinguish the genotypes. Genetic relationships within the genotypes were evaluated by generating a dissimilarity matrix based on Ward's method (Squared Euclidean distance). The phenetic dendrogram and the Principal Component Analysis generated, separated the 51 Indian genotypes from the three Australian lines. The cluster analysis indicated that sandalwood germplasm within India constitutes a broad genetic base with values of genetic dissimilarity ranging from 15 to 91 %. A core collection of 21 selected individuals revealed the same diversity of the entire population. The results show that RAPD analysis is an efficient marker technology for estimating genetic diversity and relatedness, thereby enabling the formulation of appropriate strategies for conservation, germplasm management, and selection of diverse parents for sandalwood improvement programmes.
Resumo:
This study examines the population genetic structure of Asian elephants (Elephas maximus) across India, which harbours over half the world's population of this endangered species. Mitochondrial DNA control region sequences and allele frequencies at six nuclear DNA microsatellite markers obtained from the dung of free-ranging elephants reveal low mtDNA and typical microsatellite diversity. Both known divergent clades of mtDNA haplotypes in the Asian elephant are present in India, with southern and central India exhibiting exclusively the β clade of Fernando et al. (2000), northern India exhibiting exclusively the α clade and northeastern India exhibiting both, but predominantly the α clade. A nested clade analysis revealed isolation by distance as the principal mechanism responsible for the observed haplotype distributions within the α and β clades. Analyses of molecular variance and pairwise population FST tests based on both mitochondrial and microsatellite DNA suggest that northern-northeastern India, central India, Nilgiris (in southern India) and Anamalai-Periyar (in southern India) are four demographically autonomous population units and should be managed separately. In addition, evidence for female philopatry, male-mediated gene flow and two possible historical biogeographical barriers is described.
Resumo:
Infection of the skin or throat by Streptococcus dysgalactiae subspecies equisimilis (SDSE) may result in a number of human diseases. To understand mechanisms that give rise to new genetic variants in this species, we used multi-locus sequence typing (MLST) to characterise relationships in the SDSE population from India, a country where streptococcal disease is endemic. The study revealed Indian SDSE isolates have sequence types (STs) predominantly different to those reported from other regions of the world. Emm-ST combinations in India are also largely unique. Split decomposition analysis, the presence of emm-types in unrelated clonal complexes, and analysis of phylogenetic trees based on concatenated sequences all reveal an extensive history of recombination within the population. The ratio of recombination to mutation (r/m) events (11:1) and per site r/m ratio (41:1) in this population is twice as high as reported for SDSE from non-endemic regions. Recombination involving the emm-gene is also more frequent than recombination involving housekeeping genes, consistent with diversification of M proteins offering selective advantages to the pathogen. Our data demonstrate that genetic recombination in endemic regions is more frequent than non-endemic regions, and gives rise to novel local SDSE variants, some of which may have increased fitness or pathogenic potential.
Resumo:
This paper presents a novel approach for designing a fixed gain robust power system stabilizer (PSS) with particu lar emphasis on achieving a minimum closed loop perfor mance, over a wide range of operating and system condi tion. The minimum performance requirements of the con troller has been decided apriori and obtained by using a genetic algorithm (GA) based power system stabilizer. The proposed PSS is robust to changes in the plant parameters brought about due to changes in system and operating con dition, guaranteeing a minimum performance. The efficacy of the proposed method has been tested on a multimachine system. The proposed method of tuning the PSS is an at tractive alternative to conventional fixed gain stabilizer de sign, as it retains the simplicity of the conventional PSS and still guarantees a robust acceptable performance over a wider range of operating and system condition.
Resumo:
Genetic Algorithms (GAs) are recognized as an alternative class of computational model, which mimic natural evolution to solve problems in a wide domain including machine learning, music generation, genetic synthesis etc. In the present study Genetic Algorithm has been employed to obtain damage assessment of composite structural elements. It is considered that a state of damage can be modeled as reduction in stiffness. The task is to determine the magnitude and location of damage. In a composite plate that is discretized into a set of finite elements, if a jth element is damaged, the GA based technique will predict the reduction in Ex and Ey and the location j. The fact that the natural frequency decreases with decrease in stiffness is made use of in the method. The natural frequency of any two modes of the damaged plates for the assumed damage parameters is facilitated by the use of Eigen sensitivity analysis. The Eigen value sensitivities are the derivatives of the Eigen values with respect to certain design parameters. If ωiu is the natural frequency of the ith mode of the undamaged plate and ωid is that of the damaged plate, with δωi as the difference between the two, while δωk is a similar difference in the kth mode, R is defined as the ratio of the two. For a random selection of Ex,Ey and j, a ratio Ri is obtained. A proper combination of Ex,Ey and j which makes Ri−R=0 is obtained by Genetic Algorithm.