867 resultados para Genetic Algorithm for Rule-Set Prediction (GARP)


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work evaluates a spline-based smoothing method applied to the output of a glucose predictor. Methods:Our on-line prediction algorithm is based on a neural network model (NNM). We trained/validated the NNM with a prediction horizon of 30 minutes using 39/54 profiles of patients monitored with the Guardian® Real-Time continuous glucose monitoring system The NNM output is smoothed by fitting a causal cubic spline. The assessment parameters are the error (RMSE), mean delay (MD) and the high-frequency noise (HFCrms). The HFCrms is the root-mean-square values of the high-frequency components isolated with a zero-delay non-causal filter. HFCrms is 2.90±1.37 (mg/dl) for the original profiles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

La gestión del tráfico aéreo (Air Traffic Management, ATM) está experimentando un cambio de paradigma hacia las denominadas operaciones basadas trayectoria. Bajo dicho paradigma se modifica el papel de los controladores de tráfico aéreo desde una operativa basada su intervención táctica continuada hacia una labor de supervisión a más largo plazo. Esto se apoya en la creciente confianza en las soluciones aportadas por las herramientas automatizadas de soporte a la decisión más modernas. Para dar soporte a este concepto, se precisa una importante inversión para el desarrollo, junto con la adquisición de nuevos equipos en tierra y embarcados, que permitan la sincronización precisa de la visión de la trayectoria, basada en el intercambio de información entre ambos actores. Durante los últimos 30 a 40 años las aerolíneas han generado uno de los menores retornos de la inversión de entre todas las industrias. Sin beneficios tangibles, la industria aérea tiene dificultades para atraer el capital requerido para su modernización, lo que retrasa la implantación de dichas mejoras. Esta tesis tiene como objetivo responder a la pregunta de si las capacidades actualmente instaladas en las aeronaves comerciales se pueden aplicar para lograr la sincronización de la trayectoria con el nivel de calidad requerido. Además, se analiza en ella si, conjuntamente con mejoras en las herramientas de predicción trayectorias instaladas en tierra en para facilitar la gestión de las arribadas, dichas capacidades permiten obtener los beneficios esperados en el marco de las operaciones basadas en trayectoria. Esto podría proporcionar un incentivo para futuras actualizaciones de la aviónica que podrían llevar a mejoras adicionales. El concepto operacional propuesto en esta tesis tiene como objetivo permitir que los aviones sean pilotados de una manera consistente con las técnicas actuales de vuelo optimizado. Se permite a las aeronaves que desciendan en el denominado “modo de ángulo de descenso gestionado” (path-managed mode), que es el preferido por la mayoría de las compañías aéreas, debido a que conlleva un reducido consumo de combustible. El problema de este modo es que en él no se controla de forma activa el tiempo de llegada al punto de interés. En nuestro concepto operacional, la incertidumbre temporal se gestiona en mediante de la medición del tiempo en puntos estratégicamente escogidos a lo largo de la trayectoria de la aeronave, y permitiendo la modificación por el control de tierra de la velocidad de la aeronave. Aunque la base del concepto es la gestión de las ordenes de velocidad que se proporcionan al piloto, para ser capaces de operar con los niveles de equipamiento típicos actualmente, dicho concepto también constituye un marco en el que la aviónica más avanzada (por ejemplo, que permita el control por el FMS del tiempo de llegada) puede integrarse de forma natural, una vez que esta tecnología este instalada. Además de gestionar la incertidumbre temporal a través de la medición en múltiples puntos, se intenta reducir dicha incertidumbre al mínimo mediante la mejora de las herramienta de predicción de la trayectoria en tierra. En esta tesis se presenta una novedosa descomposición del proceso de predicción de trayectorias en dos etapas. Dicha descomposición permite integrar adecuadamente los datos de la trayectoria de referencia calculada por el Flight Management System (FMS), disponibles usando Futuro Sistema de Navegación Aérea (FANS), en el sistema de predicción de trayectorias en tierra. FANS es un equipo presente en los aviones comerciales de fuselaje ancho actualmente en la producción, e incluso algunos aviones de fuselaje estrecho pueden tener instalada avionica FANS. Además de informar automáticamente de la posición de la aeronave, FANS permite proporcionar (parte de) la trayectoria de referencia en poder de los FMS, pero la explotación de esta capacidad para la mejora de la predicción de trayectorias no se ha estudiado en profundidad en el pasado. La predicción en dos etapas proporciona una solución adecuada al problema de sincronización de trayectorias aire-tierra dado que permite la sincronización de las dimensiones controladas por el sistema de guiado utilizando la información de la trayectoria de referencia proporcionada mediante FANS, y también facilita la mejora en la predicción de las dimensiones abiertas restantes usado un modelo del guiado que explota los modelos meteorológicos mejorados disponibles en tierra. Este proceso de predicción de la trayectoria de dos etapas se aplicó a una muestra de 438 vuelos reales que realizaron un descenso continuo (sin intervención del controlador) con destino Melbourne. Dichos vuelos son de aeronaves del modelo Boeing 737-800, si bien la metodología descrita es extrapolable a otros tipos de aeronave. El método propuesto de predicción de trayectorias permite una mejora en la desviación estándar del error de la estimación del tiempo de llegada al punto de interés, que es un 30% menor que la que obtiene el FMS. Dicha trayectoria prevista mejorada se puede utilizar para establecer la secuencia de arribadas y para la asignación de las franjas horarias para cada aterrizaje (slots). Sobre la base del slot asignado, se determina un perfil de velocidades que permita cumplir con dicho slot con un impacto mínimo en la eficiencia del vuelo. En la tesis se propone un nuevo algoritmo que determina las velocidades requeridas sin necesidad de un proceso iterativo de búsqueda sobre el sistema de predicción de trayectorias. El algoritmo se basa en una parametrización inteligente del proceso de predicción de la trayectoria, que permite relacionar el tiempo estimado de llegada con una función polinómica. Resolviendo dicho polinomio para el tiempo de llegada deseado, se obtiene de forma natural el perfil de velocidades optimo para cumplir con dicho tiempo de llegada sin comprometer la eficiencia. El diseño de los sistemas de gestión de arribadas propuesto en esta tesis aprovecha la aviónica y los sistemas de comunicación instalados de un modo mucho más eficiente, proporcionando valor añadido para la industria. Por tanto, la solución es compatible con la transición hacia los sistemas de aviónica avanzados que están desarrollándose actualmente. Los beneficios que se obtengan a lo largo de dicha transición son un incentivo para inversiones subsiguientes en la aviónica y en los sistemas de control de tráfico en tierra. ABSTRACT Air traffic management (ATM) is undergoing a paradigm shift towards trajectory based operations where the role of an air traffic controller evolves from that of continuous intervention towards supervision, as decision making is improved based on increased confidence in the solutions provided by advanced automation. To support this concept, significant investment for the development and acquisition of new equipment is required on the ground as well as in the air, to facilitate the high degree of trajectory synchronisation and information exchange required. Over the past 30-40 years the airline industry has generated one of the lowest returns on invested capital among all industries. Without tangible benefits realised, the airline industry may find it difficult to attract the required investment capital and delay acquiring equipment needed to realise the concept of trajectory based operations. In response to these challenges facing the modernisation of ATM, this thesis aims to answer the question whether existing aircraft capabilities can be applied to achieve sufficient trajectory synchronisation and improvements to ground-based trajectory prediction in support of the arrival management process, to realise some of the benefits envisioned under trajectory based operations, and to provide an incentive for further avionics upgrades. The proposed operational concept aims to permit aircraft to operate in a manner consistent with current optimal aircraft operating techniques. It allows aircraft to descend in the fuel efficient path managed mode as preferred by a majority of airlines, with arrival time not actively controlled by the airborne automation. The temporal uncertainty is managed through metering at strategically chosen points along the aircraft’s trajectory with primary use of speed advisories. While the focus is on speed advisories to support all aircraft and different levels of equipage, the concept also constitutes a framework in which advanced avionics as airborne time-of-arrival control can be integrated once this technology is widely available. In addition to managing temporal uncertainty through metering at multiple points, this temporal uncertainty is minimised by improving the supporting trajectory prediction capability. A novel two-stage trajectory prediction process is presented to adequately integrate aircraft trajectory data available through Future Air Navigation Systems (FANS) into the ground-based trajectory predictor. FANS is standard equipment on any wide-body aircraft in production today, and some single-aisle aircraft are easily capable of being fitted with FANS. In addition to automatic position reporting, FANS provides the ability to provide (part of) the reference trajectory held by the aircraft’s Flight Management System (FMS), but this capability has yet been widely overlooked. The two-stage process provides a ‘best of both world’s’ solution to the air-ground synchronisation problem by synchronising with the FMS reference trajectory those dimensions controlled by the guidance mode, and improving on the prediction of the remaining open dimensions by exploiting the high resolution meteorological forecast available to a ground-based system. The two-stage trajectory prediction process was applied to a sample of 438 FANS-equipped Boeing 737-800 flights into Melbourne conducting a continuous descent free from ATC intervention, and can be extrapolated to other types of aircraft. Trajectories predicted through the two-stage approach provided estimated time of arrivals with a 30% reduction in standard deviation of the error compared to estimated time of arrival calculated by the FMS. This improved predicted trajectory can subsequently be used to set the sequence and allocate landing slots. Based on the allocated landing slot, the proposed system calculates a speed schedule for the aircraft to meet this landing slot at minimal flight efficiency impact. A novel algorithm is presented that determines this speed schedule without requiring an iterative process in which multiple calls to a trajectory predictor need to be made. The algorithm is based on parameterisation of the trajectory prediction process, allowing the estimate time of arrival to be represented by a polynomial function of the speed schedule, providing an analytical solution to the speed schedule required to meet a set arrival time. The arrival management solution proposed in this thesis leverages the use of existing avionics and communications systems resulting in new value for industry for current investment. The solution therefore supports a transition concept from mixed equipage towards advanced avionics currently under development. Benefits realised under this transition may provide an incentive for ongoing investment in avionics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Type 1 diabetes-mellitus implies a life-threatening absolute insulin deficiency. Artificial pancreas (CGM sensor, insulin pump and control algorithm) is promising to outperform current open-loop therapies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose a new algorithm for the design of prediction structures with low delay and limited penalty in the rate-distortion performance for multiview video coding schemes. This algorithm constitutes one of the elements of a framework for the analysis and optimization of delay in multiview coding schemes that is based in graph theory. The objective of the algorithm is to find the best combination of prediction dependencies to prune from a multiview prediction structure, given a number of cuts. Taking into account the properties of the graph-based analysis of the encoding delay, the algorithm is able to find the best prediction dependencies to eliminate from an original prediction structure, while limiting the number of cut combinations to evaluate. We show that this algorithm obtains optimum results in the reduction of the encoding latency with a lower computational complexity than exhaustive search alternatives.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Frequencies of meiotic configurations in cytogenetic stocks are dependent on chiasma frequencies in segments defined by centromeres, breakpoints, and telomeres. The expectation maximization algorithm is proposed as a general method to perform maximum likelihood estimations of the chiasma frequencies in the intervals between such locations. The estimates can be translated via mapping functions into genetic maps of cytogenetic landmarks. One set of observational data was analyzed to exemplify application of these methods, results of which were largely concordant with other comparable data. The method was also tested by Monte Carlo simulation of frequencies of meiotic configurations from a monotelodisomic translocation heterozygote, assuming six different sample sizes. The estimate averages were always close to the values given initially to the parameters. The maximum likelihood estimation procedures can be extended readily to other kinds of cytogenetic stocks and allow the pooling of diverse cytogenetic data to collectively estimate lengths of segments, arms, and chromosomes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The delineation of functional economic areas, or market areas, is a problem of high practical relevance, since the delineation of functional sets such as economic areas in the US, Travel-to-Work Areas in the United Kingdom, and their counterparts in other OECD countries are the basis of many statistical operations and policy making decisions at local level. This is a combinatorial optimisation problem defined as the partition of a given set of indivisible spatial units (covering a territory) into regions characterised by being (a) self-contained and (b) cohesive, in terms of spatial interaction data (flows, relationships). Usually, each region must reach a minimum size and self-containment level, and must be continuous. Although these optimisation problems have been typically solved through greedy methods, a recent strand of the literature in this field has been concerned with the use of evolutionary algorithms with ad hoc operators. Although these algorithms have proved to be successful in improving the results of some of the more widely applied official procedures, they are so time consuming that cannot be applied directly to solve real-world problems. In this paper we propose a new set of group-based mutation operators, featuring general operations over disjoint groups, tailored to ensure that all the constraints are respected during the operation to improve efficiency. A comparative analysis of our results with those from previous approaches shows that the proposed algorithm systematically improves them in terms of both quality and processing time, something of crucial relevance since it allows dealing with most large, real-world problems in reasonable time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A generic method for the estimation of parameters for Stochastic Ordinary Differential Equations (SODEs) is introduced and developed. This algorithm, called the GePERs method, utilises a genetic optimisation algorithm to minimise a stochastic objective function based on the Kolmogorov-Smirnov statistic. Numerical simulations are utilised to form the KS statistic. Further, the examination of some of the factors that improve the precision of the estimates is conducted. This method is used to estimate parameters of diffusion equations and jump-diffusion equations. It is also applied to the problem of model selection for the Queensland electricity market. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: Inpatient length of stay (LOS) is an important measure of hospital activity, health care resource consumption, and patient acuity. This research work aims at developing an incremental expectation maximization (EM) based learning approach on mixture of experts (ME) system for on-line prediction of LOS. The use of a batchmode learning process in most existing artificial neural networks to predict LOS is unrealistic, as the data become available over time and their pattern change dynamically. In contrast, an on-line process is capable of providing an output whenever a new datum becomes available. This on-the-spot information is therefore more useful and practical for making decisions, especially when one deals with a tremendous amount of data. Methods and material: The proposed approach is illustrated using a real example of gastroenteritis LOS data. The data set was extracted from a retrospective cohort study on all infants born in 1995-1997 and their subsequent admissions for gastroenteritis. The total number of admissions in this data set was n = 692. Linked hospitalization records of the cohort were retrieved retrospectively to derive the outcome measure, patient demographics, and associated co-morbidities information. A comparative study of the incremental learning and the batch-mode learning algorithms is considered. The performances of the learning algorithms are compared based on the mean absolute difference (MAD) between the predictions and the actual LOS, and the proportion of predictions with MAD < 1 day (Prop(MAD < 1)). The significance of the comparison is assessed through a regression analysis. Results: The incremental learning algorithm provides better on-line prediction of LOS when the system has gained sufficient training from more examples (MAD = 1.77 days and Prop(MAD < 1) = 54.3%), compared to that using the batch-mode learning. The regression analysis indicates a significant decrease of MAD (p-value = 0.063) and a significant (p-value = 0.044) increase of Prop(MAD

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Through a prospective study of 70 youths staying at homeless-youth shelters, the authors tested the utility of I. Ajzen's (1991) theory of planned behavior (TPB), by comparing the constructs of self-efficacy with perceived behavioral control (PBC), in predicting people's rule-following behavior during shelter stays. They performed the 1st wave of data collection through a questionnaire assessing the standard TPB components of attitudes, subjective norms, PBC, and behavioral intentions in relation to following the set rules at youth shelters. Further, they distinguished between items assessing PBC (or perceived control) and those reflecting self-efficacy (or perceived difficulty). At the completion of each youth's stay at the shelter, shelter staff rated the rule adherence for that participant. Regression analyses revealed some support for the TPB in that subjective norm was a significant predictor of intentions. However, self-efficacy emerged as the strongest predictor of intentions and was the only significant predictor of rule-following behavior. Thus, the results of the present study indicate the possibility that self-efficacy is integral to predicting rule adherence within this context and reaffirm the importance of incorporating notions of people's perceived ease or difficulty in performing actions in models of attitude-behavior prediction.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Determination of the subcellular location of a protein is essential to understanding its biochemical function. This information can provide insight into the function of hypothetical or novel proteins. These data are difficult to obtain experimentally but have become especially important since many whole genome sequencing projects have been finished and many resulting protein sequences are still lacking detailed functional information. In order to address this paucity of data, many computational prediction methods have been developed. However, these methods have varying levels of accuracy and perform differently based on the sequences that are presented to the underlying algorithm. It is therefore useful to compare these methods and monitor their performance. Results: In order to perform a comprehensive survey of prediction methods, we selected only methods that accepted large batches of protein sequences, were publicly available, and were able to predict localization to at least nine of the major subcellular locations (nucleus, cytosol, mitochondrion, extracellular region, plasma membrane, Golgi apparatus, endoplasmic reticulum (ER), peroxisome, and lysosome). The selected methods were CELLO, MultiLoc, Proteome Analyst, pTarget and WoLF PSORT. These methods were evaluated using 3763 mouse proteins from SwissProt that represent the source of the training sets used in development of the individual methods. In addition, an independent evaluation set of 2145 mouse proteins from LOCATE with a bias towards the subcellular localization underrepresented in SwissProt was used. The sensitivity and specificity were calculated for each method and compared to a theoretical value based on what might be observed by random chance. Conclusion: No individual method had a sufficient level of sensitivity across both evaluation sets that would enable reliable application to hypothetical proteins. All methods showed lower performance on the LOCATE dataset and variable performance on individual subcellular localizations was observed. Proteins localized to the secretory pathway were the most difficult to predict, while nuclear and extracellular proteins were predicted with the highest sensitivity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A statistics-based method using genetic algorithms for predicting discrete sequences is presented. The prediction of the next value is based upon a fixed number of previous values and the statistics offered by the training data. According to the statistics, in similar past cases different values occurred next. If these values are considered with the appropriate weights, the forecast is successful. Weights are generated by genetic algorithms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cleavage by the proteasome is responsible for generating the C terminus of T-cell epitopes. Modeling the process of proteasome cleavage as part of a multi-step algorithm for T-cell epitope prediction will reduce the number of non-binders and increase the overall accuracy of the predictive algorithm. Quantitative matrix-based models for prediction of the proteasome cleavage sites in a protein were developed using a training set of 489 naturally processed T-cell epitopes (nonamer peptides) associated with HLA-A and HLA-B molecules. The models were validated using an external test set of 227 T-cell epitopes. The performance of the models was good, identifying 76% of the C-termini correctly. The best model of proteasome cleavage was incorporated as the first step in a three-step algorithm for T-cell epitope prediction, where subsequent steps predicted TAP affinity and MHC binding using previously derived models.