956 resultados para General relativity and gravitation
Resumo:
Gravitationally coupled scalar fields, originally introduced by Jordan, Brans and Dicke to account for a non-constant gravitational coupling, are a prediction of many non-Einsteinian theories of gravity not excluding perturbative formulations of string theory. In this paper, we compute the cross sections for scattering and absorption of scalar and tensor gravitational waves by a resonant-mass detector in the framework of the Jordan-Brans-Dicke theory. The results are then specialized to the case of a detector of spherical shape and shown to reproduce those obtained in general relativity in a certain limit. Eventually we discuss the potential detectability of scalar waves emitted in a spherically symmetric gravitational collapse.
Resumo:
We study the response and cross sections for the absorption of GW energy generated in a Jordan-Brans-Dicke theory by a resonant mass detector shaped as a hollow sphere. As a source of the GW we take a binary system in the Newtonian approximation. For masses of the stars of the order of the solar mass, the emitted GW sweeps a range of frequencies which include the first resonant mode of the detector.
Resumo:
It has been argued that a black hole horizon can support the long-range fields of a Nielsen-Olesen string and that one can think of such a vortex as black hole "hair." In this paper, we examine the properties of an Abelian Higgs vortex in the presence of a charged black hole as we allow the hole to approach extremality. Using both analytical and numerical techniques, we show that the magnetic field lines (as well as the scalar field) of the vortex are completely expelled from the black hole in the extreme limit. This was to be expected, since extreme black holes in Einstein-Maxwell theory are known to exhibit such a "Meissner effect" in general. This would seem to imply that a vortex does not want to be attached to an extreme black hole. We calculate the total energy of the vortex fields in the presence of an extreme black hole. When the hole is small relative to the size of the vortex, it is energetically favored for the hole to remain inside the vortex region, contrary to the intuition that the hole should be expelled. However, as we allow the extreme horizon radius to become very large compared to the radius of the vortex, we do find evidence of an instability. This proves that it is energetically unfavorable for a thin vortex to interact with a large extreme black hole. This would seem to dispel the notion that a black hole can support "long" Abelian Higgs hair in the extreme limit. We show that these considerations do not go through in the near-extreme limit. Finally, we discuss the implications for strings that end at black holes, as in the processes where a string snaps by nucleating black holes.
Resumo:
It was shown by Weyl that the general static axisymmetric solution of the vacuum Einstein equations in four dimensions is given in terms of a single axisymmetric solution of the Laplace equation in three-dimensional flat space. Weyls construction is generalized here to arbitrary dimension D>~4. The general solution of the D-dimensional vacuum Einstein equations that admits D-2 orthogonal commuting non-null Killing vector fields is given either in terms of D-3 independent axisymmetric solutions of Laplaces equation in three-dimensional flat space or by D-4 independent solutions of Laplaces equation in two-dimensional flat space. Explicit examples of new solutions are given. These include a five-dimensional asymptotically flat black ring with an event horizon of topology S1S2 held in equilibrium by a conical singularity in the form of a disk.
Resumo:
A spatially flat Robertson-Walker spacetime driven by a cosmological constant is nonconformally coupled to a massless scalar field. The equations of semiclassical gravity are explicitly solved for this case, and a self-consistent de Sitter solution associated with the Bunch-Davies vacuum state is found (the effect of the quantum field is to shift slightly the effective cosmological constant). Furthermore, it is shown that the corrected de Sitter spacetime is stable under spatially isotropic perturbations of the metric and the quantum state. These results are independent of the free renormalization parameters.
Resumo:
Coalescing compact binary systems are important sources of gravitational waves. Here we investigate the detectability of this gravitational radiation by the recently proposed laser interferometers. The spectral density of noise for various practicable configurations of the detector is also reviewed. This includes laser interferometers with delay lines and Fabry-Prot cavities in the arms, both in standard and dual recycling arrangements. The sensitivity of the detector in all those configurations is presented graphically and the signal-to-noise ratio is calculated numerically. For all configurations we find values of the detector's parameters which maximize the detectability of coalescing binaries, the discussion comprising Newtonian- as well as post-Newtonian-order effects. Contour plots of the signal-to-noise ratio are also presented in certain parameter domains which illustrate the interferometer's response to coalescing binary signals.
Resumo:
The statistical theory of signal detection and the estimation of its parameters are reviewed and applied to the case of detection of the gravitational-wave signal from a coalescing binary by a laser interferometer. The correlation integral and the covariance matrix for all possible static configurations are investigated numerically. Approximate analytic formulas are derived for the case of narrow band sensitivity configuration of the detector.
Resumo:
Many common genetic variants identified by genome-wide association studies for complex traits map to genes previously linked to rare inherited Mendelian disorders. A systematic analysis of common single-nucleotide polymorphisms (SNPs) in genes responsible for Mendelian diseases with kidney phenotypes has not been performed. We thus developed a comprehensive database of genes for Mendelian kidney conditions and evaluated the association between common genetic variants within these genes and kidney function in the general population. Using the Online Mendelian Inheritance in Man database, we identified 731 unique disease entries related to specific renal search terms and confirmed a kidney phenotype in 218 of these entries, corresponding to mutations in 258 genes. We interrogated common SNPs (minor allele frequency >5%) within these genes for association with the estimated GFR in 74,354 European-ancestry participants from the CKDGen Consortium. However, the top four candidate SNPs (rs6433115 at LRP2, rs1050700 at TSC1, rs249942 at PALB2, and rs9827843 at ROBO2) did not achieve significance in a stage 2 meta-analysis performed in 56,246 additional independent individuals, indicating that these common SNPs are not associated with estimated GFR. The effect of less common or rare variants in these genes on kidney function in the general population and disease-specific cohorts requires further research.
Resumo:
We discuss a multisoliton solution to Einsteins equations in vacuum. The solution is interpreted as many gravitational solitons propagating and colliding on a homogeneous cosmological background. Following a previous letter, we characterize the solitons by their localizability and by their peculiar properties under collisions. Furthermore, we define an associated frame-dependent velocity field which illustrates the solitonic character of these gravitational solitons in the classical sense.
Resumo:
We solve Einsteins equations in an n-dimensional vacuum with the simplest ansatz leading to a Friedmann-Robertson-Walker (FRW) four-dimensional space time. We show that the FRW model must be of radiation. For the open models the extra dimensions contract as a result of cosmological evolution. For flat and closed models they contract only when there is one extra dimension.
Resumo:
We propose a simple geometrical prescription for coupling a test quantum scalar field to an "inflaton" (classical scalar field) in the presence of gravity. When the inflaton stems from the compactification of a Kaluza-Klein theory, the prescription leaves no arbitrariness and amounts to a dimensional reduction of the Klein-Gordon equation. We discuss the possible relevance of this coupling to "reheating" in inflationary cosmologies.
Resumo:
The in-in effective action formalism is used to derive the semiclassical correction to Einsteins equations due to a massless scalar quantum field conformally coupled to small gravitational perturbations in spatially flat cosmological models. The vacuum expectation value of the stress tensor of the quantum field is directly derived from the renormalized in-in effective action. The usual in-out effective action is also discussed and it is used to compute the probability of particle creation. As one application, the stress tensor of a scalar field around a static cosmic string is derived and the back-reaction effect on the gravitational field of the string is discussed.
Resumo:
Abstract Traditionally, the common reserving methods used by the non-life actuaries are based on the assumption that future claims are going to behave in the same way as they did in the past. There are two main sources of variability in the processus of development of the claims: the variability of the speed with which the claims are settled and the variability between the severity of the claims from different accident years. High changes in these processes will generate distortions in the estimation of the claims reserves. The main objective of this thesis is to provide an indicator which firstly identifies and quantifies these two influences and secondly to determine which model is adequate for a specific situation. Two stochastic models were analysed and the predictive distributions of the future claims were obtained. The main advantage of the stochastic models is that they provide measures of variability of the reserves estimates. The first model (PDM) combines one conjugate family Dirichlet - Multinomial with the Poisson distribution. The second model (NBDM) improves the first one by combining two conjugate families Poisson -Gamma (for distribution of the ultimate amounts) and Dirichlet Multinomial (for distribution of the incremental claims payments). It was found that the second model allows to find the speed variability in the reporting process and development of the claims severity as function of two above mentioned distributions' parameters. These are the shape parameter of the Gamma distribution and the Dirichlet parameter. Depending on the relation between them we can decide on the adequacy of the claims reserve estimation method. The parameters have been estimated by the Methods of Moments and Maximum Likelihood. The results were tested using chosen simulation data and then using real data originating from the three lines of business: Property/Casualty, General Liability, and Accident Insurance. These data include different developments and specificities. The outcome of the thesis shows that when the Dirichlet parameter is greater than the shape parameter of the Gamma, resulting in a model with positive correlation between the past and future claims payments, suggests the Chain-Ladder method as appropriate for the claims reserve estimation. In terms of claims reserves, if the cumulated payments are high the positive correlation will imply high expectations for the future payments resulting in high claims reserves estimates. The negative correlation appears when the Dirichlet parameter is lower than the shape parameter of the Gamma, meaning low expected future payments for the same high observed cumulated payments. This corresponds to the situation when claims are reported rapidly and fewer claims remain expected subsequently. The extreme case appears in the situation when all claims are reported at the same time leading to expectations for the future payments of zero or equal to the aggregated amount of the ultimate paid claims. For this latter case, the Chain-Ladder is not recommended.
Resumo:
A new supersymmetric black hole solution of five-dimensional supergravity is presented. It has an event horizon of topology S1 X S2. This is the first example of a supersymmetric, asymptotically flat black hole of nonspherical topology. The solution is uniquely specified by its electric charge and two independent angular momenta. These conserved charges can be arbitrarily close, but not exactly equal, to those of a supersymmetric black hole of spherical topology.
Resumo:
It is shown that a IIA superstring carrying D0-brane charge can be "blown up", in a Minkowski vacuum background, to a (1/4)-supersymmetric tubular D2-brane, supported against collapse by the angular momentum generated by crossed electric and magnetic Born-Infeld fields. This supertube can be viewed as a world-volume realization of the sigma-model Q lump.