815 resultados para Geldof, Bob


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface compositional changes in GaAs due to RF plasmas of different gases have been investigated by XPS and etch rates were measured using AFM. Angular Resolved XPS (ARXPS) was also employed for depth analysis of the composition of the surface layers. An important role in this study was determination of oxide thickness using XPS data. The study of surface - plasma interaction was undertaken by correlating results of surface analysis with plasma diagnosis. Different experiments were designed to accurately measure the BEs associated with the Ga 3d, Ga 2P3/2 and LMM peaks using XPS analysis and propose identification in terms of the oxides of GaAs. Along with GaAs wafers, some reference compounds such as metallic Ga and Ga2O3 powder were used. A separate study aiming the identification of the GaAs surface oxides formed on the GaAs surface during and after plasma processing was undertaken. Surface compositional changes after plasma treatment, prior to surface analysis are considered, with particular reference to the oxides formed in the air on the activated surface. Samples exposed to ambient air for different periods of time and also to pure oxygen were analysed. Models of surface processes were proposed for explanation of the stoichiometry changes observed with the inert and reactive plasmas used. In order to help with the understanding of the mechanisms responsible for surface effects during plasma treatment, computer simulation using SRIM code was also undertaken. Based on simulation and experimental results, models of surface phenomena are proposed. Discussion of the experimental and simulated results is made in accordance with current theories and published results of different authors. The experimental errors introduced by impurities and also by data acquisition and processing are also evaluated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasingly, lab evaluations of mobile applications are incorporating mobility. The inclusion of mobility alone, however, is insufficient to generate a realistic evaluation context since real-life users will typically be required to monitor their environment while moving through it. While field evaluations represent a more realistic evaluation context, such evaluations pose difficulties, including data capture and environmental control, which mean that a lab-based evaluation is often a more practical choice. This paper describes a novel evaluation technique that mimics a realistic mobile usage context in a lab setting. The technique requires that participants monitor their environment and change the route they are walking to avoid dynamically changing hazards (much as reallife users would be required to do). Two studies that employed this technique are described, and the results (which indicate the technique is useful) are discussed.