928 resultados para Gas- and particle PAHs


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Title of dissertation: MAGNETIC AND ACOUSTIC INVESTIGATIONS OF TURBULENT SPHERICAL COUETTE FLOW Matthew M. Adams, Doctor of Philosophy, 2016 Dissertation directed by: Professor Daniel Lathrop Department of Physics This dissertation describes experiments in spherical Couette devices, using both gas and liquid sodium. The experimental geometry is motivated by the Earth's outer core, the seat of the geodynamo, and consists of an outer spherical shell and an inner sphere, both of which can be rotated independently to drive a shear flow in the fluid lying between them. In the case of experiments with liquid sodium, we apply DC axial magnetic fields, with a dominant dipole or quadrupole component, to the system. We measure the magnetic field induced by the flow of liquid sodium using an external array of Hall effect magnetic field probes, as well as two probes inserted into the fluid volume. This gives information about possible velocity patterns present, and we extend previous work categorizing flow states, noting further information that can be extracted from the induced field measurements. The limitations due to a lack of direct velocity measurements prompted us to work on developing the technique of using acoustic modes to measure zonal flows. Using gas as the working fluid in our 60~cm diameter spherical Couette experiment, we identified acoustic modes of the container, and obtained excellent agreement with theoretical predictions. For the case of uniform rotation of the system, we compared the acoustic mode frequency splittings with theoretical predictions for solid body flow, and obtained excellent agreement. This gave us confidence in extending this work to the case of differential rotation, with a turbulent flow state. Using the measured splittings for this case, our colleagues performed an inversion to infer the pattern of zonal velocities within the flow, the first such inversion in a rotating laboratory experiment. This technique holds promise for use in liquid sodium experiments, for which zonal flow measurements have historically been challenging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Continuous Synthesis by Solution Combustion was employed in this work aiming to obtain tin dioxide nanostructured. Basically, a precursor solution is prepared and then be atomized and sprayed into the flame, where its combustion occurs, leading to the formation of particles. This is a recent technique that shows an enormous potential in oxides deposition, mainly by the low cost of equipment and precursors employed. The tin dioxide (SnO2) nanostructured has been widely used in various applications, especially as gas sensors and varistors. In the case of sensors based on semiconducting ceramics, where surface reactions are responsible for the detection of gases, the importance of surface area and particle size is even greater. The preference for a nanostructured material is based on its significant increase in surface area compared to conventional microcrystalline powders and small particle size, which may benefit certain properties such as high electrical conductivity, high thermal stability, mechanical and chemical. In this work, were employed as precursor solution tin chloride dehydrate diluted in anhydrous ethyl alcohol. Were utilized molar ratio chloride/solvent of 0,75 with the purpose of investigate its influence in the microstructure of produced powder. The solution precursor flux was 3 mL/min. Analysis with X-ray diffraction appointed that a solution precursor with molar ratio chloride/solvent of 0,75 leads to crystalline powder with single phase and all peaks are attributed to phase SnO2. Parameters as distance from the flame with atomizer distance from the capture system with the pilot, molar ratio and solution flux doesn t affect the presence of tin dioxide in the produced powder. In the characterization of the obtained powder techniques were used as thermogravimetric (TGA) and thermodiferential analysis (DTA), particle size by laser diffraction (GDL), crystallographic analysis by X-ray diffraction (XRD), morphology by scanning electron microscopy (SEM), transmission electron microscopy (TEM), specific surface area (BET) and electrical conductivity analysis. The techniques used revealed that the SnO2 exhibits behavior of a semiconductor material, and a potentially promising material for application as varistor and sensor systems for gas

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The refractory metal carbides have proven important in the development of engineering materials due to their properties such as high hardness, high melting point, high thermal conductivity and high chemical stability. The niobium carbide presents these characteristics. The compounds of niobium impregnated with copper also have excellent dielectric and magnetic properties, and furthermore, the Cu doping increases the catalytic activity in the oxidation processes of hydrogen. This study aimed to the synthesis of nanostructured materials CuNbC and niobium and copper oxide from precursor tris(oxalate) oxiniobate ammonium hydrate through gas-solid and solid-solid reaction, respectively. Both reactions were carried out at low temperature (1000°C) and short reaction time (2 hours). The niobium carbide was produced with 5 % and 11% of copper, and the niobium oxide with 5% of copper. The materials were characterized by X-Ray Diffraction (XRD), Rietveld refinement, Scanning Electron Microscopy (SEM), X-Ray Fluorescence Spectroscopy (XRF), infrared spectroscopy (IR), thermogravimetric (TG) and differential thermal analysis (DTA , BET and particle size Laser. From the XRD analysis and Rietveld refinement of CuNbC with S = 1.23, we observed the formation of niobium carbide and metallic copper with cubic structure. For the synthesis of mixed oxide made of niobium and copper, the formation of two distinct phases was observed: CuNb2O6 and Nb2O5, although the latter was present in small amounts

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estuaries are environments prone to the input of chemical pollutants of various kinds and origins, including polycyclic aromatic hydrocarbons (PAHs). Anthropogenic PAHs may have two possible sources: pyrolytic (with four or more aromatic rings and low degree of alkylation) and petrogenic (with two and three aromatic rings and high degree of alkylation). This study aimed to evaluate the levels, distribution and possible sources of polycyclic aromatic hydrocarbons in the estuary of the Potengi river, Natal, Brazil. Samples of bottom sediments were collected in the final 12 km of the estuary until its mouth to the sea, where the urbanization of the Great Natal is more concentrated. Sampling was performed on 12 cross sections, with three stations each, totaling 36 samples, identified as T1 to T36. The non alkylated and alkylated PAHs were analyzed by gas chromatography coupled to mass spectrometry (GC / MS). PAHs were detected in all 36 stations with total concentration on each varying 174-109407 ng g-1. These values are comparable to those of several estuarine regions worldwide with high anthropogenic influence, suggesting the record of diffuse contamination installed in the estuary. PAHs profiles were similar for most stations. In 32 of the 36 stations, low molecular weight PAHs (with 2 and 3 ring: naphthalene, phenanthrene and their alkylated homologues) prevailed, which ranged from 54% to 100% of the total PAH, indicating that leaks, spills and combustion fuels are the dominant source of PAH pollution in the estuary. The level of contamination by PAHs in most stations suggests that there is potential risk of occasional adverse biological effects, but in some stations adverse impacts on the biota may occur frequently. The diagnostic ratios could differentiate sources of PAHs in sediments of the estuary, which were divided into three groups: petrogenic, pyrolytic and mixing of sources. The urban concentration of the Great Natal and the various industrial activities associated with it can be blamed as potential sources of PAHs in bottom sediments of the estuary studied. The data presented highlight the need to control the causes of existing pollution in the estuary

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We evaluated the water characteristics and particle sedimentation in Macrobrachium amazonicum (Heller 1862) grow-out ponds supplied with a high inflow of nutrient-rich water. Prawns were subject to different stocking and harvesting strategies: upper-graded juveniles, lower-graded juveniles, non-graded juveniles + selective harvesting and traditional farming (non-grading juveniles and total harvest only). Dissolved oxygen, afternoon N-ammonia and N-nitrate and soluble orthophosphate were lower in the ponds in comparison with inflow water through the rearing cycle. Ponds stocked with the upper population fraction of graded prawns showed higher turbidity, total suspended solids and total Kjeldahl nitrogen than the remaining treatments. An increase in the chemical oxygen demand:biochemical oxygen demand ratio from inlet (4.9) to pond (7.1-8.0) waters indicated a non-readily biodegradable fraction enhancement in ponds. The sedimentation mean rate ranged from 0.08 to 0.16 mm day(-1) and sediment contained >80% of organic matter. The major factors affecting pond ecosystem dynamic were the organic load (due to primary production and feed addition) and bioturbation caused by stocking larger animals. Data suggest that M. amazonicum grow-out in ponds subjected to a high inflow of nutrient-rich water produce changes in the water properties, huge accumulation of organic sediment at the pond bottom and non-readily biodegradable material in the water column. However, the water quality remains suitable for aquaculture purposes. Therefore, nutrient-rich waters, when available, may represent a source of unpaid nutrients, which may be incorporated into economically valued biomass if managed properly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The project goal was to determine plant operations and maintenance worker’s level of exposure to mercury during routine and non-routine (i.e. turnarounds and inspections) maintenance events in eight gas processing plants. The project team prepared sampling and analysis plans designed to each plant’s process design and scheduled maintenance events. Occupational exposure sampling and monitoring efforts were focused on the measurement of mercury vapor concentration in worker breathing zone air during specific maintenance events including: pipe scrapping, process filter replacement, and process vessel inspection. Similar exposure groups were identified and worker breathing zone and ambient air samples were collected and analyzed for total mercury. Occupational exposure measurement techniques included portable field monitoring instruments, standard passive and active monitoring methods and an emerging passive absorption technology. Process sampling campaigns were focused on inlet gas streams, mercury removal unit outlets, treated gas, acid gas and sales gas. The results were used to identify process areas with increased potential for mercury exposure during maintenance events. Sampling methods used for the determination of total mercury in gas phase streams were based on the USEPA Methods 30B and EPA 1631 and EPA 1669. The results of four six-week long sampling campaigns have been evaluated and some conclusions and recommendations have been made. The author’s role in this project included the direction of all field phases of the project and the development and implementation of the sampling strategy. Additionally, the author participated in the development and implementation of the Quality Assurance Project Plan, Data Quality Objectives, and Similar Exposure Groups identification. All field generated data was reviewed by the author along with laboratory reports in order to generate conclusions and recommendations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dual problems of sustaining the fast growth of human society and preserving the environment for future generations urge us to shift our focus from exploiting fossil oils to researching and developing more affordable, reliable and clean energy sources. Human beings had a long history that depended on meeting our energy demands with plant biomass, and the modern biorefinery technologies realize the effective conversion of biomass to production of transportation fuels, bulk and fine chemicals so to alleviate our reliance on fossil fuel resources of declining supply. With the aim of replacing as much non-renewable carbon from fossil oils with renewable carbon from biomass as possible, innovative R&D activities must strive to enhance the current biorefinery process and secure our energy future. Much of my Ph.D. research effort is centered on the study of electrocatalytic conversion of biomass-derived compounds to produce value-added chemicals, biofuels and electrical energy on model electrocatalysts in AEM/PEM-based continuous flow electrolysis cell and fuel cell reactors. High electricity generation performance was obtained when glycerol or crude glycerol was employed as fuels in AEMFCs. The study on selective electrocatalytic oxidation of glycerol shows an electrode potential-regulated product distribution where tartronate and mesoxalate can be selectively produced with electrode potential switch. This finding then led to the development of AEMFCs with selective production of valuable tartronate or mesoxalate with high selectivity and yield and cogeneration of electricity. Reaction mechanisms of electrocatalytic oxidation of ethylene glycol and 1,2-propanediol were further elucidated by means of an on-line sample collection technique and DFT modeling. Besides electro-oxidation of biorenewable alcohols to chemicals and electricity, electrocatalytic reduction of keto acids (e.g. levulinic acid) was also studied for upgrading biomass-based feedstock to biofuels while achieving renewable electricity storage. Meanwhile, ORR that is often coupled in AEMFCs on the cathode was investigated on non-PGM electrocatalyst with comparable activity to commercial Pt/C. The electro-biorefinery process could be coupled with traditional biorefinery operation and will play a significant role in our energy and chemical landscape.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By employing interpretive policy analysis this thesis aims to assess, measure, and explain policy capacity for government and non-government organizations involved in reclaiming Alberta's oil sands. Using this type of analysis to assess policy capacity is a novel approach for understanding reclamation policy; and therefore, this research will provide a unique contribution to the literature surrounding reclamation policy. The oil sands region in northeast Alberta, Canada is an area of interest for a few reasons; primarily because of the vast reserves of bitumen and the environmental cost associated with developing this resource. An increase in global oil demand has established incentive for industry to seek out and develop new reserves. Alberta's oil sands are one of the largest remaining reserves in the world, and there is significant interest in increasing production in this region. Furthermore, tensions in several oil exporting nations in the Middle East remain unresolved, and this has garnered additional support for a supply side solution to North American oil demands. This solution relies upon the development of reserves in both the United States and Canada. These compounding factors have contributed to the increased development in the oil sands of northeastern Alberta. Essentially, a rapid expansion of oil sands operations is ongoing, and is the source of significant disturbance across the region. This disturbance, and the promises of reclamation, is a source of contentious debates amongst stakeholders and continues to be highly visible in the media. If oil sands operations are to retain their social license to operate, it is critical that reclamation efforts be effective. One concern non-governmental organizations (NGOs) expressed criticizes the current monitoring and enforcement of regulatory programs in the oil sands. Alberta's NGOs have suggested the data made available to them originates from industrial sources, and is generally unchecked by government. In an effort to discern the overall status of reclamation in the oil sands this study explores several factors essential to policy capacity: work environment, training, employee attitudes, perceived capacity, policy tools, evidence based work, and networking. Data was collected through key informant interviews with senior policy professionals in government and non-government agencies in Alberta. The following are agencies of interest in this research: Canadian Association of Petroleum Producers (CAPP); Alberta Environment and Sustainable Resource Development (AESRD); Alberta Energy Regulator (AER); Cumulative Environmental Management Association (CEMA); Alberta Environment Monitoring, Evaluation, and Reporting Agency (AEMERA); Wood Buffalo Environmental Association (WBEA). The aim of this research is to explain how and why reclamation policy is conducted in Alberta's oil sands. This will illuminate government capacity, NGO capacity, and the interaction of these two agency typologies. In addition to answering research questions, another goal of this project is to show interpretive analysis of policy capacity can be used to measure and predict policy effectiveness. The oil sands of Alberta will be the focus of this project, however, future projects could focus on any government policy scenario utilizing evidence-based approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hardboard processing wastewater was evaluated as a feedstock in a bio refinery co-located with the hardboard facility for the production of fuel grade ethanol. A thorough characterization was conducted on the wastewater and the composition changes of which during the process in the bio refinery were tracked. It was determined that the wastewater had a low solid content (1.4%), and hemicellulose was the main component in the solid, accounting for up to 70%. Acid pretreatment alone can hydrolyze the majority of the hemicellulose as well as oligomers, and over 50% of the monomer sugars generated were xylose. The percentage of lignin remained in the liquid increased after acid pretreatment. The characterization results showed that hardboard processing wastewater is a feasible feedstock for the production of ethanol. The optimum conditions to hydrolyze hemicellulose into fermentable sugars were evaluated with a two-stage experiment, which includes acid pretreatment and enzymatic hydrolysis. The experimental data were fitted into second order regression models and Response Surface Methodology (RSM) was employed. The results of the experiment showed that for this type of feedstock enzymatic hydrolysis is not that necessary. In order to reach a comparatively high total sugar concentration (over 45g/l) and low furfural concentration (less than 0.5g/l), the optimum conditions were reached when acid concentration was between 1.41 to 1.81%, and reaction time was 48 to 76 minutes. The two products produced from the bio refinery were compared with traditional products, petroleum gasoline and traditional potassium acetate, in the perspective of sustainability, with greenhouse gas (GHG) emission as an indicator. Three allocation methods, system expansion, mass allocation and market value allocation methods were employed in this assessment. It was determined that the life cycle GHG emissions of ethanol were -27.1, 20.8 and 16 g CO2 eq/MJ, respectively, in the three allocation methods, whereas that of petroleum gasoline is 90 g CO2 eq/MJ. The life cycle GHG emissions of potassium acetate in mass allocation and market value allocation method were 555.7 and 716.0 g CO2 eq/kg, whereas that of traditional potassium acetate is 1020 g CO2/kg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The United States of America is making great efforts to transform the renewable and abundant biomass resources into cost-competitive, high-performance biofuels, bioproducts, and biopower. This is the key to increase domestic production of transportation fuels and renewable energy, and reduce greenhouse gas and other pollutant emissions. This dissertation focuses specifically on assessing the life cycle environmental impacts of biofuels and bioenergy produced from renewable feedstocks, such as lignocellulosic biomass, renewable oils and fats. The first part of the dissertation presents the life cycle greenhouse gas (GHG) emissions and energy demands of renewable diesel (RD) and hydroprocessed jet fuels (HRJ). The feedstocks include soybean, camelina, field pennycress, jatropha, algae, tallow and etc. Results show that RD and HRJ produced from these feedstocks reduce GHG emissions by over 50% compared to comparably performing petroleum fuels. Fossil energy requirements are also significantly reduced. The second part of this dissertation discusses the life cycle GHG emissions, energy demands and other environmental aspects of pyrolysis oil as well as pyrolysis oil derived biofuels and bioenergy. The feedstocks include waste materials such as sawmill residues, logging residues, sugarcane bagasse and corn stover, and short rotation forestry feedstocks such as hybrid poplar and willow. These LCA results show that as much as 98% GHG emission savings is possible relative to a petroleum heavy fuel oil. Life cycle GHG savings of 77 to 99% were estimated for power generation from pyrolysis oil combustion relative to fossil fuels combustion for electricity, depending on the biomass feedstock and combustion technologies used. Transportation fuels hydroprocessed from pyrolysis oil show over 60% of GHG reductions compared to petroleum gasoline and diesel. The energy required to produce pyrolysis oil and pyrolysis oil derived biofuels and bioelectricity are mainly from renewable biomass, as opposed to fossil energy. Other environmental benefits include human health, ecosystem quality and fossil resources. The third part of the dissertation addresses the direct land use change (dLUC) impact of forest based biofuels and bioenergy. An intensive harvest of aspen in Michigan is investigated to understand the GHG mitigation with biofuels and bioenergy production. The study shows that the intensive harvest of aspen in MI compared to business as usual (BAU) harvesting can produce 18.5 billion gallons of ethanol to blend with gasoline for the transport sector over the next 250 years, or 32.2 billion gallons of bio-oil by the fast pyrolysis process, which can be combusted to generate electricity or upgraded to gasoline and diesel. Intensive harvesting of these forests can result in carbon loss initially in the aspen forest, but eventually accumulates more carbon in the ecosystem, which translates to a CO2 credit from the dLUC impact. Time required for the forest-based biofuels to reach carbon neutrality is approximately 60 years. The last part of the dissertation describes the use of depolymerization model as a tool to understand the kinetic behavior of hemicellulose hydrolysis under dilute acid conditions. Experiments are carried out to measure the concentrations of xylose and xylooligomers during dilute acid hydrolysis of aspen. The experiment data are used to fine tune the parameters of the depolymerization model. The results show that the depolymerization model successfully predicts the xylose monomer profile in the reaction, however, it overestimates the concentrations of xylooligomers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous work has shown that high-temperature short-term spike thermal annealing of hydrogenated amorphous silicon (a-Si:H) photovoltaic thermal (PVT) systems results in higher electrical energy output. The relationship between temperature and performance of a-Si:H PVT is not simple as high temperatures during thermal annealing improves the immediate electrical performance following an anneal, but during the anneal it creates a marked drop in electrical performance. In addition, the power generation of a-Si:H PVT depends on both the environmental conditions and the Staebler-Wronski Effect kinetics. In order to improve the performance of a-Si:H PVT systems further, this paper reports on the effect of various dispatch strategies on system electrical performance. Utilizing experimental results from thermal annealing, an annealing model simulation for a-Si:Hbased PVT was developed and applied to different cities in the U.S. to investigate potential geographic effects on the dispatch optimization of the overall electrical PVT systems performance and annual electrical yield. The results showed that spike thermal annealing once per day maximized the improved electrical energy generation. In the outdoor operating condition this ideal behavior deteriorates and optimization rules are required to be implemented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wireless Sensor Networks (WSNs) are widely used for various civilian and military applications, and thus have attracted significant interest in recent years. This work investigates the important problem of optimal deployment of WSNs in terms of coverage and energy consumption. Five deployment algorithms are developed for maximal sensing range and minimal energy consumption in order to provide optimal sensing coverage and maximum lifetime. Also, all developed algorithms include self-healing capabilities in order to restore the operation of WSNs after a number of nodes have become inoperative. Two centralized optimization algorithms are developed, one based on Genetic Algorithms (GAs) and one based on Particle Swarm Optimization (PSO). Both optimization algorithms use powerful central nodes to calculate and obtain the global optimum outcomes. The GA is used to determine the optimal tradeoff between network coverage and overall distance travelled by fixed range sensors. The PSO algorithm is used to ensure 100% network coverage and minimize the energy consumed by mobile and range-adjustable sensors. Up to 30% - 90% energy savings can be provided in different scenarios by using the developed optimization algorithms thereby extending the lifetime of the sensor by 1.4 to 10 times. Three distributed optimization algorithms are also developed to relocate the sensors and optimize the coverage of networks with more stringent design and cost constraints. Each algorithm is cooperatively executed by all sensors to achieve better coverage. Two of our algorithms use the relative positions between sensors to optimize the coverage and energy savings. They provide 20% to 25% more energy savings than existing solutions. Our third algorithm is developed for networks without self-localization capabilities and supports the optimal deployment of such networks without requiring the use of expensive geolocation hardware or energy consuming localization algorithms. This is important for indoor monitoring applications since current localization algorithms cannot provide good accuracy for sensor relocation algorithms in such indoor environments. Also, no sensor redeployment algorithms, which can operate without self-localization systems, developed before our work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ceria is an important component of catalysts for oxidation reactions that proceed through the Mars-van Krevelen mechanism, promoting activity. A paradigm example of this is the VOx–CeO2 system for oxidative dehydrogenation reactions, where vanadium oxide species are supported on ceria and a special synergy between them is behind the enhanced activity: reduction of the catalyst is promoted by ceria undergoing reduction. This leads to favourable oxygen vacancy formation and hydrogen adsorption energies—useful descriptors for the oxidation activity of VOx–CeO2 catalysts. In this paper, we examine if this promoting effect on ceria-based catalysts holds for other metal oxide modifiers and we investigate MnOn– and CrOn–CeO2(111) (n = 0 − 4) as examples. We show, combining density functional theory calculations and statistical thermodynamics that similarly to the vanadia modifier, the stable species in each case is MnO2– and CrO2–CeO2. Both show favourable energetics for oxygen vacancy formation and hydrogen adsorption, indicating that VO2–CeO2 is not the only system of this type that can have an enhanced activity for oxidation reactions. However, the mechanism involved in each case is different: CrO2–CeO2 shows similar properties to VO2–CeO2 with ceria reduction upon oxygen removal stabilising the 5+ oxidation state of Cr. In contrast, with MnO2–CeO2, Mn is preferentially reduced. Finally, a model system of VO2–Mg:CeO2 is explored that shows a synergy between VO2 modification and Mg doping. These results shed light on the factors involved in active oxidation catalysts based on supported metal oxides on ceria that should be taken into consideration in a rational design of such catalysts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semiconductor nanowires, based on silicon (Si) or germanium (Ge) are leading candidates for many ICT applications, including next generation transistors, optoelectronics, gas and biosensing and photovoltaics. Key to these applications is the possibility to tune the band gap by changing the diameter of the nanowire. Ge nanowires of different diameter have been studied with H termination, but, using ideas from chemistry, changing the surface terminating group can be used to modulate the band gap. In this paper we apply the generalised gradient approximation of density functional theory (GGA-DFT) and hybrid DFT to study the effect of diameter and surface termination using –H, –NH2 and –OH groups on the band gap of (001), (110) and (111) oriented germanium nanowires. We show that the surface terminating group allows both the magnitude and the nature of the band gap to be changed. We further show that the absorption edge shifts to longer wavelength with the –NH2 and –OH terminations compared to the –H termination and we trace the origin of this effect to valence band modifications upon modifying the nanowire with –NH2 or –OH. These results show that it is possible to tune the band gap of small diameter Ge nanowires over a range of ca. 1.1 eV by simple surface chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work, where additional value-creating processes in existing combined heat and power (CHP) structures have been examined, is motivated by a political- and consumer-driven strive towards a bioeconomy and a stagnation for the existing business models in large parts of the CHP sector. The research is based on cases where the integration of flash pyrolysis for co-production of bio-oil, co-gasification for production of fuel gas and synthetic biofuels as well as leaching of extractable fuel components in existing CHP plants have been simulated. In particular, this work has focused on the CHP plants that utilize boilers of fluidized bed (FB) type, where the concept of coupling a separate FB reactor to the FB of the boiler forms an important basis for the analyses. In such dual fluidized bed (DFB) technology, heat is transferred from the boiler to the new rector that is operating with other fluidization media than air, thereby enabling other thermochemical processes than combustion to take place. The result of this work shows that broader operations at existing CHP plants have the potential to enable production of significant volumes of chemicals and/or fuels with high efficiency, while maintaining heat supply to external customers. Based on the insight that the technical preconditions for a broader operation are favourable, the motivation and ability among the incumbents in the Swedish CHP sector to participate in a transition of their operation towards a biorefinery was examined. The result of this assessment showed that the incumbents believe that a broader operation can create significant values for their own operations, the society and the environment, but that they lack both a strong motivation as well as important abilities to move into the new technological fields. If the concepts of broader production are widely implemented in the Swedish FB based CHP sector, this can substantially contribute in the transition towards a bioeconomy.