917 resultados para GOLD NANOCAGES
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A significant increase of surface hydrophilicity of copper and gold surfaces was obtained after atmospheric pressure plasma treatment using the surface dielectric barrier discharge with specific electrode geometry, the so-called diffuse coplanar surface barrier discharge. Surface wettability was estimated using the sessile drop method with further calculation of the surface free energy. After the plasma treatments, it was observed that the treated surfaces exhibited hydrophobic recovery (or aging effect). The aging effect was studied in different storage environments, such as air, low and high vacuum. The role of plasma and the reasons of the following aging effect are discussed with respect to the observed hydrophilic recovery after immersing the aged surfaces into deionized water. The changes in the surface morphology, composition and bond structure are presented and discussed as well. (C) 2013 Elsevier B. V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A synergistic electrocatalytic effect was observed in sensors where two electrocatalytic materials (functionalized gold nanoparticles and lutetium bisphthalocyanine) were co-deposited using the Langmuir-Blodgett technique. Films were prepared using a novel method where water soluble functionalised gold nanoparticles [(11-mercaptoundecyl)tetra(ethylene glycol)] (SAuNPs) were inserted in floating films of lutetium bisphthalocyanine (LuPc2) and dimethyldioctadecylammonium bromide (DODAB) as the amphiphilic matrix. The formation of stable and homogeneous mixed films was confirmed by pi-A isotherms, BAM, UV-vis and Raman spectroscopy, as well as by SEM and TEM microscopy. The synergistic effect towards hydroquinone of the electrodes modified with LuPc2:DODAB/SAuNP was characterised by an increase in the intensity of the redox peaks and a reduction of the overpotential. This synergistic electrocatalytic effect arose from the interaction between the SAuNPs and the phthalocyanines that occur in the Langmuir-Blodgett films and from the high surface area provided by the nanostructured films. The sensitivity increased with the amount of LuPc2 and SAuNPs inserted in the films and limits of detection in the range of 10(-7) mol L-1 were attained. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
It is often assumed that the hydrogen atoms in the thiol groups of a benzene-1,4-dithiol dissociate when Au-benzene-1,4-dithiol-Au junctions are formed. We demonstrate, by stability and transport property calculations, that this assumption cannot be made. We show that the dissociative adsorption of methanethiol and benzene-1,4-dithiol molecules on a flat Au(111) surface is energetically unfavorable and that the activation barrier for this reaction is as high as 1 eV. For the molecule in the junction, our results show, for all electrode geometries studied, that the thiol junctions are energetically more stable than their thiolate counterparts. Due to the fact that density functional theory (DFT) within the local density approximation (LDA) underestimates the energy difference between the lowest unoccupied molecular orbital and the highest occupied molecular orbital by several electron-volts, and that it does not capture the renormalization of the energy levels due to the image charge effect, the conductance of the Au-benzene-1,4-dithiol-Au junctions is overestimated. After taking into account corrections due to image charge effects by means of constrained-DFT calculations and electrostatic classical models, we apply a scissor operator to correct the DFT energy level positions, and calculate the transport properties of the thiol and thiolate molecular junctions as a function of the electrode separation. For the thiol junctions, we show that the conductance decreases as the electrode separation increases, whereas the opposite trend is found for the thiolate junctions. Both behaviors have been observed in experiments, therefore pointing to the possible coexistence of both thiol and thiolate junctions. Moreover, the corrected conductance values, for both thiol and thiolate, are up to two orders of magnitude smaller than those calculated with DFT-LDA. This brings the theoretical results in quantitatively good agreement with experimental data.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The development of a new methodology for the construction of very efficient flow cells for mercury detection by potentiometric stripping analysis, employing the thin gold layer of recordable CDs as working electrode is reported. This new source of electrodes (CDtrodes) show very attractive performance, similar to that obtained with commercial gold electrodes, with superior versatility. The low cost of this new source of gold electrodes allows a frequent replacement of the electrode, avoiding cumbersome clean-up treatments. Various experimental parameters have been optimized to yield low detection limits (0.25 ng/mL of mercury for 5 min deposition at 0.3 V) and good precision (standard deviation of 1.9% was obtained for 15 repetitive measurements using 10 ng/mL of mercury). Standard curves were found to be linear over the range of 0.5-100 μg L-1 of mercury. The flow cells developed were used for the quantification of mercury in oceanic and tap water. © Springer-Verlag 2000.
Resumo:
New strategies to fulfill craniofacial bone defects have gained attention in recent years due to the morbidity of autologous bone graft harvesting. We aimed to evaluate the in vivo efficacy of bone tissue engineering strategy using mesenchymal stem cells associated with two matrices (bovine bone mineral and α-tricalcium phosphate), compared to an autologous bone transfer. A total of 28 adult, male, non-immunosuppressed Wistar rats underwent a critical-sized osseous defect of 5 mm diameter in the alveolar region. Animals were divided into five groups. Group 1 (n = 7) defects were repaired with autogenous bone grafts; Group 2 (n = 5) defects were repaired with bovine bone mineral free of cells; Group 3 (n = 5) defects were repaired with bovine bone mineral loaded with mesenchymal stem cells; Group 4 (n = 5) defects were repaired with α-tricalcium phosphate free of cells; and Group 5 (n = 6) defects were repaired with α-tricalcium phosphate loaded with mesenchymal stem cells. Groups 2-5 were compared to Group 1, the reference group. Healing response was evaluated by histomorphometry and computerized tomography. Histomorphometrically, Group 1 showed 60.27% ± 16.13% of bone in the defect. Groups 2 and 3 showed 23.02% ± 8.6% (p = 0.01) and 38.35% ± 19.59% (p = 0.06) of bone in the defect, respectively. Groups 4 and 5 showed 51.48% ± 11.7% (p = 0.30) and 61.80% ± 2.14% (p = 0.88) of bone in the defect, respectively. Animals whose bone defects were repaired with α-tricalcium phosphate and mesenchymal stem cells presented the highest bone volume filling the defects; both were not statistically different from autogenous bone.