952 resultados para GLUCOCORTICOID-REGULATED GENES
Resumo:
``The goal of this study was to examine the effect of maternal iron deficiency on the developing hippocampus in order to define a developmental window for this effect, and to see whether iron deficiency causes changes in glucocorticoid levels. The study was carried out using pre-natal, post-natal, and pre + post-natal iron deficiency paradigm. Iron deficient pregnant dams and their pups displayed elevated corticosterone which, in turn, differentially affected glucocorticoid receptor (GR) expression in the CA1 and the dentate gyrus. Brain Derived Neurotrophic Factor (BDNF) was reduced in the hippocampi of pups following elevated corticosterone levels. Reduced neurogenesis at P7 was seen in pups born to iron deficient mothers, and these pups had reduced numbers of hippocampal pyramidal and granule cells as adults. Hippocampal subdivision volumes also were altered. The structural and molecular defects in the pups were correlated with radial arm maze performance; reference memory function was especially affected. Pups from dams that were iron deficient throughout pregnancy and lactation displayed the complete spectrum of defects, while pups from dams that were iron deficient only during pregnancy or during lactation displayed subsets of defects. These findings show that maternal iron deficiency is associated with altered levels of corticosterone and GR expression, and with spatial memory deficits in their pups.'' (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
Stem cells in cell based therapy for cardiac injury is being potentially considered. However, genetic regulatory networks involved in cardiac differentiation are not clearly understood. Among stem cell differentiation models, mouse P19 embryonic carcinoma (EC) cells, are employed for studying (epi)genetic regulation of cardiomyocyte differentiation. Here, we comprehensively assessed cardiogenic differentiation potential of 5-azacytidine (Aza) on P19 EC-cells, associated gene expression profiles and the changes in DNA methylation, histone acetylation and activated-ERK signaling status during differentiation. Initial exposure of Aza to cultured EC-cells leads to an efficient (55%) differentiation to cardiomyocyte-rich embryoid bodies with a threefold (16.8%) increase in the cTnI(+) cardiomyocytes. Expression levels of cardiac-specific gene markers i.e., Isl-1, BMP-2, GATA-4, and alpha-MHC were up-regulated following Aza induction, accompanied by differential changes in their methylation status particularly that of BMP-2 and alpha-MHC. Additionally, increases in the levels of acetylated-H3 and pERK were observed during Aza-induced cardiac differentiation. These studies demonstrate that Aza is a potent cardiac inducer when treated during the initial phase of differentiation of mouse P19 EC-cells and its effect is brought about epigenetically and co-ordinatedly by hypo-methylation and histone acetylation-mediated hyper-expression of cardiogenesis-associated genes and involving activation of ERK signaling.
Resumo:
The Rv0805 gene in Mycobacterium tuberculosis encodes a metallophosphoesterase which shows cAMP-hydrolytic activity. Overexpression of Rv0805 has been used as a tool to lower intracellular cAMP levels and thereby elucidate the roles of cAMP in mycobacteria. Here we show that levels of cAMP in M. tuberculosis were lowered by only similar to 30% following overexpression of Rv0805, and transcript levels of a number of genes, which include those associated with virulence and the methyl citrate cycle, were altered. The genes that showed altered expression were distinct from those differentially regulated in a strain deleted for the cAMP-receptor protein (CRPMt), consistent with the relatively low dependence on cAMP of CRPMt binding to DNA. Using mutants of Rv0805 we show that the transcriptional signature of Rv0805 overexpression is a combination of catalysis-dependent and independent effects, and that the structurally flexible C-terminus of Rv0805 is crucial for the catalysis-independent effects of the protein. Our study demonstrates the dissociation of Rv0805 and cAMP-regulated gene expression, and reveals alternate functions for this phosphodiesterase from M. tuberculosis.
Resumo:
Guanylyl cyclase C (GC-C) is expressed in intestinal epithelial cells and serves as the receptor for bacterial heat-stable enterotoxin (ST) peptides and the guanylin family of gastrointestinal hormones. Activation of GC-C elevates intracellular cGMP, which modulates intestinal fluid-ion homeostasis and differentiation of enterocytes along the crypt-villus axis. GC-C activity can regulate colonic cell proliferation by inducing cell cycle arrest, and mice lacking GC-C display increased cell proliferation in colonic crypts. Activation of GC-C by administration of ST to wild type, but not Gucy2c(-/-), mice resulted in a reduction in carcinogen-induced aberrant crypt foci formation. In p53-deficient human colorectal carcinoma cells, ST led to a transcriptional up-regulation of p21, the cell cycle inhibitor, via activation of the cGMP-responsive kinase PKGII and p38 MAPK. Prolonged treatment of human colonic carcinoma cells with ST led to nuclear accumulation of p21, resulting in cellular senescence and reduced tumorigenic potential. Our results, therefore, identify downstream effectors for GC-C that contribute to regulating intestinal cell proliferation. Thus, genomic responses to a bacterial toxin can influence intestinal neoplasia and senescence.
Resumo:
Background: The set of indispensable genes that are required by an organism to grow and sustain life are termed as essential genes. There is a strong interest in identification of the set of essential genes, particularly in pathogens, not only for a better understanding of the pathogen biology, but also for identifying drug targets and the minimal gene set for the organism. Essentiality is inherently a systems property and requires consideration of the system as a whole for their identification. The available experimental approaches capture some aspects but each method comes with its own limitations. Moreover, they do not explain the basis for essentiality in most cases. A powerful prediction method to recognize this gene pool including rationalization of the known essential genes in a given organism would be very useful. Here we describe a multi-level multi-scale approach to identify the essential gene pool in a deadly pathogen, Mycobacterium tuberculosis. Results: The multi-level workflow analyses the bacterial cell by studying (a) genome-wide gene expression profiles to identify the set of genes which show consistent and significant levels of expression in multiple samples of the same condition, (b) indispensability for growth by using gene expression integrated flux balance analysis of a genome-scale metabolic model, (c) importance for maintaining the integrity and flow in a protein-protein interaction network and (d) evolutionary conservation in a set of genomes of the same ecological niche. In the gene pool identified, the functional basis for essentiality has been addressed by studying residue level conservation and the sub-structure at the ligand binding pockets, from which essential amino acid residues in that pocket have also been identified. 283 genes were identified as essential genes with high-confidence. An agreement of about 73.5% is observed with that obtained from the experimental transposon mutagenesis technique. A large proportion of the identified genes belong to the class of intermediary metabolism and respiration. Conclusions: The multi-scale, multi-level approach described can be generally applied to other pathogens as well. The essential gene pool identified form a basis for designing experiments to probe their finer functional roles and also serve as a ready shortlist for identifying drug targets.
Resumo:
Gene expression is the most fundamental biological process, which is essential for phenotypic variation. It is regulated by various external (environment and evolution) and internal (genetic) factors. The level of gene expression depends on promoter architecture, along with other external factors. Presence of sequence motifs, such as transcription factor binding sites (TFBSs) and TATA-box, or DNA methylation in vertebrates has been implicated in the regulation of expression of some genes in eukaryotes, but a large number of genes lack these sequences. On the other hand, several experimental and computational studies have shown that promoter sequences possess some special structural properties, such as low stability, less bendability, low nucleosome occupancy, and more curvature, which are prevalent across all organisms. These structural features may play role in transcription initiation and regulation of gene expression. We have studied the relationship between the structural features of promoter DNA, promoter directionality and gene expression variability in S. cerevisiae. This relationship has been analyzed for seven different measures of gene expression variability, along with two different regulatory effect measures. We find that a few of the variability measures of gene expression are linked to DNA structural properties, nucleosome occupancy, TATA-box presence, and bidirectionality of promoter regions. Interestingly, gene responsiveness is most intimately correlated with DNA structural features and promoter architecture.
Resumo:
Hippocampal neurons are affected by chronic stress and have a high density of cytoplasmic mineralocorticoid and glucocorticoid receptors (MR and GR). Detailed studies on the genomic effects of the stress hormone corticosterone at physiologically relevant concentrations on different steps in synaptic transmission are limited. In this study, we tried to delineate how activation of MR and GR by different concentrations of corticosterone affects synaptic transmission at various levels. The effect of 3-h corticosterone (25, 50, and 100nM) treatment on depolarization-mediated calcium influx, vesicular release and properties of miniature excitatory post-synaptic currents (mEPSCs) were studied in cultured hippocampal neurons. Activation of MR with 25nM corticosterone treatment resulted in enhanced depolarization-mediated calcium influx via a transcription-dependent process and increased frequency of mEPSCs with larger amplitude. On the other hand, activation of GR upon 100nM corticosterone treatment resulted in increase in the rate of vesicular release via the genomic actions of GR. Furthermore, GR activation led to significant increase in the frequency of mEPSCs with larger amplitude and faster decay. Our studies indicate that differential activation of the dual receptor system of MR and GR by corticosterone targets the steps in synaptic transmission differently.
Resumo:
Background: The number of genome-wide association studies (GWAS) has increased rapidly in the past couple of years, resulting in the identification of genes associated with different diseases. The next step in translating these findings into biomedically useful information is to find out the mechanism of the action of these genes. However, GWAS studies often implicate genes whose functions are currently unknown; for example, MYEOV, ANKLE1, TMEM45B and ORAOV1 are found to be associated with breast cancer, but their molecular function is unknown. Results: We carried out Bayesian inference of Gene Ontology (GO) term annotations of genes by employing the directed acyclic graph structure of GO and the network of protein-protein interactions (PPIs). The approach is designed based on the fact that two proteins that interact biophysically would be in physical proximity of each other, would possess complementary molecular function, and play role in related biological processes. Predicted GO terms were ranked according to their relative association scores and the approach was evaluated quantitatively by plotting the precision versus recall values and F-scores (the harmonic mean of precision and recall) versus varying thresholds. Precisions of similar to 58% and similar to 40% for localization and functions respectively of proteins were determined at a threshold of similar to 30 (top 30 GO terms in the ranked list). Comparison with function prediction based on semantic similarity among nodes in an ontology and incorporation of those similarities in a k nearest neighbor classifier confirmed that our results compared favorably. Conclusions: This approach was applied to predict the cellular component and molecular function GO terms of all human proteins that have interacting partners possessing at least one known GO annotation. The list of predictions is available at http://severus.dbmi.pitt.edu/engo/GOPRED.html. We present the algorithm, evaluations and the results of the computational predictions, especially for genes identified in GWAS studies to be associated with diseases, which are of translational interest.
Resumo:
Background: Hsp90 from Giardia lamblia is expressed by splicing of two independently transcribed RNA molecules, coded by genes named HspN and HspC located 777 kb apart. The reasons underlying such unique trans-splicing based generation of GlHsp90 remain unclear. Principle Finding: In this study using mass-spectrometry we identify the sequence of the unique, junctional peptide contributed by the 5' UTR of HspC ORF. This peptide is critical for the catalytic function of Hsp90 as it harbours an essential ``Arg'' in its sequence. We also show that full length GlHsp90 possesses all the functional hall marks of a canonical Hsp90 including its ability to bind and hydrolyze ATP. Using qRT-PCR as well as western blotting approach we find the reconstructed Hsp90 to be induced in response to heat shock. On the contrary we find GlHsp90 to be down regulated during transition from proliferative trophozoites to environmentally resistant cysts. This down regulation of GlHsp90 appears to be mechanistically linked to the encystation process as we find pharmacological inhibition of GlHsp90 function to specifically induce encystation. Significance: Our results implicate the trans-spliced GlHsp90 from Giardia lamblia to regulate an essential stage transition in the life cycle of this important human parasite.
Resumo:
Multiple copies of a gene require enhanced investment on the part of the cell and, as such, call for an explanation. The observation that Escherichia coli has four copies of initiator tRNA (tRNA(i)) genes, encoding a special tRNA (tRNA(fMet)) required to start protein synthesis, is puzzling particularly because the cell appears to be unaffected by the removal of one copy. However, the fitness of an organism has both absolute and relative connotations. Thus, we carried out growth competition experiments between E. coli strains that differ in the number of tRNA(i) genes they contain. This has enabled us to uncover an unexpected link between the number of tRNA(i) genes and protein synthesis, nutritional status, and fitness. Wild-type strains with the canonical four tRNA(i) genes are favored in nutrient-rich environments, and those carrying fewer are favored in nutrient-poor environments. Auxotrophs behave as if they have a nutritionally poor internal environment. A heuristic model that links tRNA(i) gene copy number, genetic stress, and growth rate accounts for the findings. Our observations provide strong evidence that natural selection can work through seemingly minor quantitative variations in gene copy number and thereby impact organismal fitness.
Resumo:
Object. Insulin-like growth factor binding proteins (IGEBPs) have been implicated in the pathogenesis of glioma. In a previous study the authors demonstrated that IGFBP-3 is a novel glioblastoma biomarker associated with poor survival. Since signal transducer and activator of transcription 1 (STAT-1) has been shown to be regulated by IGFBP-3 during chondrogenesis and is a prosurvival and radioresistant molecule in different tumors, the aim in the present study was to explore the functional significance of IGFBP-3 in malignant glioma cells, to determine if STAT-1 is indeed regulated by IGFBP-3, and to study the potential of STAT-1 as a biomarker in glioblastoma. Methods. The functional significance of IGFBP-3 was investigated using the short hairpin (sh)RNA gene knockdown approach on U251MG cells. STAT-1 regulation by IGFBP-3 was tested on U251MG and U87MG cells by shRNA gene knockdown and exogenous treatment with recombinant IGFBP-3 protein. Subsequently, the expression of STAT-1 was analyzed with real-time reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) in glioblastoma and control brain tissues. Survival analyses were done on a uniformly treated prospective cohort of adults with newly diagnosed glioblastoma (136 patients) using Kaplan-Meier and Cox regression models. Results. IGFBP-3 knockdown significantly impaired proliferation, motility, migration, and invasive capacity of U251MG cells in vitro (p < 0.005). Exogenous overexpression of IGFBP-3 in U251MG and U87MG cells demonstrated STAT-1 regulation. The mean transcript levels (by real-time RT-PCR) and the mean labeling index of STAT-1 (by IHC) were significantly higher in glioblastoma than in control brain tissues (p = 0.0239 and p < 0.001, respectively). Multivariate survival analysis revealed that STAT-1 protein expression (HR 1.015, p = 0.033, 95% CI 1.001-1.029) along with patient age (HR 1.025, p = 0.005, 95% CI 1.008-1.042) were significant predictors of shorter survival in patients with glioblastoma. Conclusions. IGFBP-3 influences tumor cell proliferation, migration, and invasion and regulates STAT-1 expression in malignant glioma cells. STAT-1 is overexpressed in human glioblastoma tissues and emerges as a novel prognostic biomarker.
Resumo:
The zinc finger transcription factors Mxr1p and Rop are key regulators of methanol metabolism in the methylotrophic yeast, Pichia pastoris, while Trm1p and Trm2p regulate methanol metabolism in Candida boidinii. Here, we demonstrate that Trm1p is essential for the expression of genes of methanol utilization (mut) pathway in P. pastoris as well. Expression of AOXI and other genes of mut pathway is severely compromised in P. pastoris Delta Trm1 strain resulting in impaired growth on media containing methanol as the sole source of carbon. Trm1p localizes to the nucleus of cells cultured on glucose or methanol. The zinc finger domain of Mxr1p but not Trm1p binds to AOXI promoter sequences in vitro, indicating that these two positive regulators act by different mechanisms. We conclude that both Trm1p and Mxr1p are essential for the expression of genes of mut pathway in P. pastoris and the mechanism of transcriptional regulation of mut pathway may be similar in P. pastoris and C. boidinii. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Glioblastoma (GBM) is the most aggressive type of brain tumor and shows very poor prognosis. Here, using genome-wide methylation analysis, we show that G-CIMP+ and G-CIMP-subtypes enrich distinct classes of biological processes. One of the hypermethylated genes in GBM, ULK2, an upstream autophagy inducer, was found to be down-regulated in GBM. Promoter hypermethylation of ULK2 was confirmed by bisulfite sequencing. GBM and glioma cell lines had low levels of ULK2 transcripts, which could be reversed upon methylation inhibitor treatment. ULK2 promoter methylation and transcript levels showed significant negative correlation. Ectopic overexpression of ULK2-induced autophagy, which further enhanced upon nutrient starvation or temozolomide chemotherapy. ULK2 also inhibited the growth of glioma cells, which required autophagy induction as kinase mutant of ULK2 failed to induce autophagy and inhibit growth. Furthermore, ULK2 induced autophagy and inhibited growth in Ras-transformed immortalized Baby Mouse Kidney (iBMK) ATG5(+/+) but not in autophagy-deficient ATG5(-/-) cells. Growth inhibition due to ULK2 induced high levels of autophagy under starvation or chemotherapy utilized apoptotic cell death but not at low levels of autophagy. Growth inhibition by ULK2 also appears to involve catalase degradation and reactive oxygen species generation. ULK2 overexpression inhibited anchorage independent growth, inhibited astrocyte transformation in vitro and tumor growth in vivo. Of all autophagy genes, we found ULK2 and its homologue ULK1 were only down-regulated in all grades of glioma. Thus these results altogether suggest that inhibition of autophagy by ULK1/2 down-regulation is essential for glioma development.
Resumo:
The performance of a building integrated photovoltaic system (BIPV) has to be commendable, not only on the electrical front but also on the thermal comfort front, thereby fulfilling the true responsibility of an energy providing shelter. Given the low thermal mass of BIPV systems, unintended and undesired outcomes of harnessing solar energy - such as heat gain into the building, especially in tropical regions - have to be adequately addressed. Cell (module) temperature is one critical factor that affects both the electrical and the thermal performance of such installations. The current paper discusses the impact of cell (module) temperature on both the electrical efficiency and thermal comfort by investigating the holistic performance of one such system (5.25 kW(p)) installed at the Centre for Sustainable Technologies in the Indian Institute of Science, Bangalore. Some recommendations (passive techniques) for improving the performance and making BIPV structures thermally comfortable have been listed out. (C) 2014 Elsevier Ltd. All rights reserved.