999 resultados para GIS modeling
Resumo:
Se presenta la implementación del modelo hidrológico distribuido de Témez sobre GRASS GIS. Este modelo se utiliza para la evaluación de recursos hídricos en régimen natural con paso mensual y para la totalidad del territorio español, tal como aparece en el Libro Blanco del Agua en España. A partir de las variables de entrada, precipitación y evapotranspiración potencial y los parámetros hidrológicos, el modelo obtiene los mapas de los distintos almacenamientos, humedad en el suelo y volumen de acuífero, y de las variables de salida del ciclo hidrológico, evapotranspiración y escorrentía total, obtenida esta última como suma de la escorrentía superficial y subterránea. El objetivo final del trabajo es la implementación de los componentes superficiales y subterráneos en el modelo hidrológico, desarrollando para ello un programa que hace funcional en GRASS GIS el modelo matemático en que se basa la evaluación de recursos hídricos
Resumo:
We present a new approach to model and classify breast parenchymal tissue. Given a mammogram, first, we will discover the distribution of the different tissue densities in an unsupervised manner, and second, we will use this tissue distribution to perform the classification. We achieve this using a classifier based on local descriptors and probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature. We studied the influence of different descriptors like texture and SIFT features at the classification stage showing that textons outperform SIFT in all cases. Moreover we demonstrate that pLSA automatically extracts meaningful latent aspects generating a compact tissue representation based on their densities, useful for discriminating on mammogram classification. We show the results of tissue classification over the MIAS and DDSM datasets. We compare our method with approaches that classified these same datasets showing a better performance of our proposal
Resumo:
This research work deals with the problem of modeling and design of low level speed controller for the mobile robot PRIM. The main objective is to develop an effective educational tool. On one hand, the interests in using the open mobile platform PRIM consist in integrating several highly related subjects to the automatic control theory in an educational context, by embracing the subjects of communications, signal processing, sensor fusion and hardware design, amongst others. On the other hand, the idea is to implement useful navigation strategies such that the robot can be served as a mobile multimedia information point. It is in this context, when navigation strategies are oriented to goal achievement, that a local model predictive control is attained. Hence, such studies are presented as a very interesting control strategy in order to develop the future capabilities of the system
Resumo:
Piecewise linear models systems arise as mathematical models of systems in many practical applications, often from linearization for nonlinear systems. There are two main approaches of dealing with these systems according to their continuous or discrete-time aspects. We propose an approach which is based on the state transformation, more particularly the partition of the phase portrait in different regions where each subregion is modeled as a two-dimensional linear time invariant system. Then the Takagi-Sugeno model, which is a combination of local model is calculated. The simulation results show that the Alpha partition is well-suited for dealing with such a system
Resumo:
Gender stereotypes are sets of characteristics that people believe to be typically true of a man or woman. We report an agent-based model (ABM) that simulates how stereotypes disseminate in a group through associative mechanisms. The model consists of agents that carry one of several different versions of a stereotype, which share part of their conceptual content. When an agent acts according to his/her stereotype, and that stereotype is shared by an observer, then the latter’s stereotype strengthens. Contrarily, if the agent does not act according to his/ her stereotype, then the observer’s stereotype weakens. In successive interactions, agents develop preferences, such that there will be a higher probability of interaction with agents that confirm their stereotypes. Depending on the proportion of shared conceptual content in the stereotype’s different versions, three dynamics emerge: all stereotypes in the population strengthen, all weaken, or a bifurcation occurs, i.e., some strengthen and some weaken. Additionally, we discuss the use of agent-based modeling to study social phenomena and the practical consequences that the model’s results might have on stereotype research and their effects on a community
Resumo:
This paper proposes a simple Ordered Probit model to analyse the monetary policy reaction function of the Colombian Central Bank. There is evidence that the reaction function is asymmetric, in the sense that the Bank increases the Bank rate when the gap between observed inflation and the inflation target (lagged once) is positive, but it does not reduce the Bank rate when the gap is negative. This behaviour suggests that the Bank is more interested in fulfilling the announced inflation target rather than in reducing inflation excessively. The forecasting performance of the model, both within and beyond the estimation period, appears to be particularly good.
Resumo:
In this paper, we employ techniques from artificial intelligence such as reinforcement learning and agent based modeling as building blocks of a computational model for an economy based on conventions. First we model the interaction among firms in the private sector. These firms behave in an information environment based on conventions, meaning that a firm is likely to behave as its neighbors if it observes that their actions lead to a good pay off. On the other hand, we propose the use of reinforcement learning as a computational model for the role of the government in the economy, as the agent that determines the fiscal policy, and whose objective is to maximize the growth of the economy. We present the implementation of a simulator of the proposed model based on SWARM, that employs the SARSA(λ) algorithm combined with a multilayer perceptron as the function approximation for the action value function.
Resumo:
Resumen basado en el de la publicación
Resumo:
Presentación que muestra una aplicación GIS propietaria de hace 15 años, junto con su nueva cara gracias al software libre. Se cuenta una arquitectura novedosa que incluye el uso del API de MapFish Server para lanzar geo-procesos, junto con el software stack de PostGIS, GeoWebCache y OpenLayers
Resumo:
A través del análisis de información pública del proyecto se han elaborado una serie de indicadores que permiten comparar el grado de adopción, actividad y participación en proyectos de software libre. Estos indicadores han sido desarrollados en base a información obtenida desde herramientas habituales en los proyectos (listas de correo, repositorios de código, etc) y que nos permiten reconstruir los patrones de comportamiento en los mismos
Resumo:
El modelat d'escenes és clau en un gran ventall d'aplicacions que van des de la generació mapes fins a la realitat augmentada. Aquesta tesis presenta una solució completa per a la creació de models 3D amb textura. En primer lloc es presenta un mètode de Structure from Motion seqüencial, a on el model 3D de l'entorn s'actualitza a mesura que s'adquireix nova informació visual. La proposta és més precisa i robusta que l'estat de l'art. També s'ha desenvolupat un mètode online, basat en visual bag-of-words, per a la detecció eficient de llaços. Essent una tècnica completament seqüencial i automàtica, permet la reducció de deriva, millorant la navegació i construcció de mapes. Per tal de construir mapes en àrees extenses, es proposa un algorisme de simplificació de models 3D, orientat a aplicacions online. L'eficiència de les propostes s'ha comparat amb altres mètodes utilitzant diversos conjunts de dades submarines i terrestres.
Resumo:
The main objective of this thesis was the integration of microstructure information in synoptic descriptors of turbulence, that reflects the mixing processes. Turbulent patches are intermittent in space and time, but they represent the dominant process for mixing. In this work, the properties of turbulent patches were considered the potential input for integrating the physical microscale measurements. The development of a method for integrating the properties of the turbulent patches required solving three main questions: a) how can we detect the turbulent patches from he microstructure measurements?; b) which are the most relevant properties of the turbulent patches?; and ) once an interval of time has been selected, what kind of synoptic parameters could better reflect the occurrence and properties of the turbulent patches? The answers to these questions were the final specific objectives of this thesis.
Resumo:
Atmospheric downwelling longwave radiation is an important component of the terrestrial energy budget; since it is strongly related with the greenhouse effect, it remarkably affects the climate. In this study, I evaluate the estimation of the downwelling longwave irradiance at the terrestrial surface for cloudless and overcast conditions using a one-dimensional radiative transfer model (RTM), specifically the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART). The calculations performed by using this model were compared with pyrgeometer measurements at three different European places: Girona (NE of the Iberian Peninsula), Payerne (in the East of Switzerland), and Heselbach (in the Black Forest, Germany). Several studies of sensitivity based on the radiative transfer model have shown that special attention on the input of temperature and water content profiles must be held for cloudless sky conditions; for overcast conditions, similar sensitivity studies have shown that, besides the atmospheric profiles, the cloud base height is very relevant, at least for optically thick clouds. Also, the estimation of DLR in places where radiosoundings are not available is explored, either by using the atmospheric profiles spatially interpolated from the gridded analysis data provided by European Centre of Medium-Range Weather Forecast (ECMWF), or by applying a real radiosounding of a nearby site. Calculations have been compared with measurements at all sites. During cloudless sky conditions, when radiosoundings were available, calculations show differences with measurements of -2.7 ± 3.4 Wm-2 (Payerne). While no in situ radiosoundings are available, differences between modeling and measurements were about 0.3 ± 9.4 Wm-2 (Girona). During overcast sky conditions, when in situ radiosoundings and cloud properties (derived from an algorithm that uses spectral infrared and microwave ground based measurements) were available (Black Forest), calculations show differences with measurements of -0.28 ± 2.52 Wm2. When using atmospheric profiles from the ECMWF and fixed values of liquid water path and droplet effective radius (Girona) calculations show differences with measurements of 4.0 ± 2.5 Wm2. For all analyzed sky conditions, it has been confirmed that estimations from radiative transfer modeling are remarkably better than those obtained by simple parameterizations of atmospheric emissivity.
Resumo:
The methodology is focused on the use of digital air photos to monitor changes in land covers and to study its dynamics and its patterns in the last 50 years. The dissertation also take into account the relationship between open habitats patterns/dynamics versus biodiversity persistence, increase risk of fire, land ownership and management. Therefore Geographic Information System (GIS) is a very interesting mapping tool that enables geographic or spatial data capture, storage, retrieval, manipulation, analysis and modeling. Finally this research develop a heuristic model to create sites using suitability maps and a reserve design model to select the most optimum sites in order to increase landscape heterogeneity at the less cost.