981 resultados para GILL HISTOLOGY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

LPS-induced TNF-alpha factor (LITAF) is a novel transcriptional factor that was first discovered in LPS-stimulated human macrophage cell line THP-1. LITAF can bind to TNF-a promoter to regulate its expression. The first scallop LITAF (named as CfLITAF) was cloned from Zhikong scallop Chlamys farreri by Expressed Sequence Tag (EST) and Polymerase Chain Reaction (PCR) techniques. The cDNA of CfLITAF was of 1240 bp and consisted of a 5' untranslated region (UTR) of 112 bp, a 3' UTR of 678 bp and an open reading frame (ORF) of 450 bp encoding a polypeptide of 149 amino acids with an estimated molecular mass of 16.08 kDa and theoretical isoelectric point of 6.77. A typical conserved LITAF-domain was identified in CfLITAF by SMART analysis. Homology analysis of the deduced amino acid sequence of CfLITAF with other known sequences by using the BLAST program revealed that CfLITAF was homologous to the LITAF from human and rat (Identity = 46%), cattle, horse, mouse and chicken (Identity = 48%), western clawed frog (Identity = 42%), and zebrafish (Identity = 50%). The mRNA expression of CfLITAF in different tissues including haemocytes, muscle, mantle, heart, gill and gonad, and the temporal expression in haemocytes challenged by LPS or peptidoglycan (PGN) were measured by Real-time RT-PCR. CfLITAF mRNA transcripts could be detected in all tissues examined and be up-regulated in haemocytes after LPS challenge. No significant changes were observed after PGN stimulation. All these data indicated the existence of LITAF in scallop and also provided clue on the presence of TNF-alpha-like molecules in invertebrates. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The C1q-domain-containing (C1qDC) proteins are a family of proteins characterized by a globular C1q (gC1q) domain in their C-terminus. They are involved in various processes of vertebrates and supposed to be an important pattern recognition receptor in innate immunity of invertebrates. In this study, a novel member of C1q-domain-containing protein family was identified from Zhikong scallop Chlamys farreri (designated as CfC1qDC) by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of CfC1qDC was of 777 bp, consisting of a T-terminal untranslated region (UTR) of 62 bp and a 3' UTR of 178 bp with a polyadenylation signal sequence AATAAA and a poly (A) tail. The CfC1qDC cDNA encoded a polypeptide of 178 amino acids, including a signal peptide and a C1q-domain of 158 amino acids with the theoretical isoelectric point of 5.19 and the predicted molecular weight of 17.2 kDa. The C1q-domain in CfC1qDC exhibited homology with those in sialic acid binding lectin from mollusks and C1qDC proteins from higher vertebrates. The typical 10 beta-strand jelly-roll folding topology structure of C1q-domain and the residues essential for effective packing of the hydrophobic core were well conserved in CfC1qDC. By fluorescent quantitative real-time PCR, mRNA transcripts of CfC1qDC were mainly detected in kidney, mantle, adductor muscle and gill, and also marginally detectable in hemocytes. In the bacterial challenge experiment, after the scallops were challenged by Listonella anguillarum, there was a significant up-regulation in the relative expression level of CfC1qDC and at 6 h post-injection, the mRNA expression reached the maximum level and was 4.55-fold higher than that of control scallops. Similarly, the expression of CfC1qDC mRNA in mixed primary cultures of hemocytes stimulated by lipopolysaccharides (LPS) was up-regulated and reached the maximum level at 6 h post-stimulation, and then dropped back to the original level gradually. In order to investigate its function, the cDNA fragment encoding the mature peptide of CfC1qDC was recombined and expressed in Escherichia coli BL21 (DE3). The recombinant CfC1qDC protein displayed a significantly strong activity to bind LIDS from E. coli, although no obvious antibacterial or agglutinating activity toward Gram-negative bacteria E. coli JM109, L. anguillarum and Gram-positive bacteria Micrococcus luteus was observed. These results suggested that CfC1qDC was absolutely a novel member of the C1qDC protein family and was involved in the recognition of invading microorganisms probably as a pattern recognition molecule in mollusk. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catalase is an important antioxidant protein that protects organisms against various oxidative stresses by eliminating hydrogen peroxide. The full-length catalase cDNA of Chinese shrimp Fenneropenaeus chinensis was cloned from the hepatopancreas using degenerate primers by the method of 3' and 5' rapid amplification of cDNA ends PCR. The cDNA sequence consists of 1892 bp with a 1560 bp open reading frame, encoding 520 amino acids with high identity to invertebrate, vertebrate and even bacterial catalases. The sequence includes the catalytic residues His71, Asn144, and Tyr354. The molecular mass of the predicted protein is 58824.04 Da with an estimated pl of 6.63. Sequence comparison showed that the deduced amino acid sequence of F. chinensis catalase shares 96%, 73%, 71% and 70% identity with that of Pacific white shrimp Litopenaeus vannamei, Abalone Haliotis discus hannai, Zhikong scallop Chlamys farreri and Human Homo sapiens, respectively. Catalase transcripts were detected in hepatopancreas, hemocytes, lymphoid organ, intestine, ovary, muscle and gill. by real-time PCR. The variation of catalase mRNA transcripts in hemocytes and hepatopancreas was also quantified by real-time PCR and the result indicated that the catalase showed up-regulated expression trends in hemocytes at 14 h and in hepatopancreas at 37 h after injection with white spot syndrome virus (WSSV). (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Antimicrobial peptides or proteins (AMPs) are proved to be one of the most important humoral factors to resist pathogen infection. As an antimicrobial protein, crustin had been described in invertebrates as a component of the innate immune system. A crustin-like gene (CruFc) was cloned from haemocytes of Chinese shrimp Fenneropenaeus chinensis by 3' and 5'-RACE PCR. The full-length cDNA consists of 523 with 405 bp open reading frame encoding 134 amino acids and the deduced peptide contains a putative signal peptide of 17 amino acids. The sequence also contains a whey-acidic protein (WAP) domain at the C-terminal. Transcripts of CruFc were mainly detected in haemocytes and gill by RT-PCR analysis. In addition, another full-length cDNA named CshFc was also cloned from haemocytes of Chinese shrimp and its inferred amino acid sequence lacks the WAP-type 'four-disulfide core' domain. The fusion proteins containing CruFc and CshFc were, respectively, produced and the antimicrobial assays revealed that the recombinant CruFc could inhibit the growth of grain-positive bacteria in vitro but the recombinant CshFc could not inhibit at the same conditions. The difference of antimicrobial activity between recombinant CruFc and CshFc provides the evidence that the four-disulfide core domain of crustin may play an important role in its biological function. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Manganese superoxide dismutase (MnSOD) plays an important role in crustacean immune defense reaction by eliminating oxidative stress. Knowledge on MnSOD at molecular level allows us to understand its regulatory mechanism in crustacean immune system. A novel mitochondrial manganese superoxide dismutase (mMnSOD) was cloned from hepatopancreas of Chinese shrimp Fenneropenaeus chinensis by 3' and 5' rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA consists of 1185 bp with a 660 bp open reading frame, encoding 220 amino acids. The deduced amino acid sequence contains a putative signal peptide of 20 amino acids. Sequence comparison showed that the mMnSOD of F. chinensis shares 88% and 82% identity with that of giant freshwater prawn Macrobrachium rosenbergii and blue crab Callinectes sapidus, respectively. mMnSOD transcripts were detected in hepatopancreas, hemocytes, lymphoid organ, intestine, ovary, muscle and gill by Northern blotting. RT-PCR analysis indicated that mMnSOD showed different expression profiles in shrimp hemocytes and hepatopancreas after artificial infection with while spot syndrome virus (WSSV). In addition, a fusion protein containing mMnSOD was produced in vitro. LC-ESI-MS analysis showed that two peptide fragments (-GDVNTVISLAPALK- and -NVRPDYVNAIWK-) of the recombinant protein were identical to the corresponding sequence of M. rosenbergii mMnSOD, and the enzyme activity of the refolded recombinant protein was also measured. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The glutathione peroxidases are essential enzymes of the cellular antioxidant defence system. In the present study, the full-length cDNA sequence encoding an extracellular glutathione peroxidase (designated CfGPx3) was isolated from Zhikong scallop Chlamys farreri. The complete cDNA was of 1194 bp, containing a 5' untranslated region (UTR) of 50 bp, a 3' UTR of 490 bp and an open reading frame (ORF) of 654 bp encoding a polypeptide of 217 amino acids. CfGPx3 possessed all the conserved features critical for the fundamental structure and function of glutathione peroxidase, such as the selenocysteine encoded by stop codon UGA, the GPx signature motif ((96)LGVPCNQFI(103)) and the active site motif ((WNFEKF184)-W-179). The high similarity of CfGPx3 with GPx from other organisms indicated that CfGPx3 should be a new member of the glutathione peroxidase family. By fluorescent quantitative real-time PCR, the CfGPx3 mRNA was universally detected in the tissues of haemocytes, gill, gonad, muscle and hepatopancreas with the highest expression in hepatopancreas. After scallops were challenged by Listonella anguillarum, the expression level of CfGPx3 transcript in haemocytes was significantly up-regulated (P<0.05) at 8 h post challenge. These results suggested that CfGPx3 was potentially involved in the immune response of scallops and perhaps contributed to the protective effects against oxidative stress. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipopolysaccharide and beta-1, 3-glucan binding protein (LGBP) is a kind of pattern recognition receptor, which can recognize and bind LPS and beta-1, 3-glucan, and plays curial roles in the innate immune defense against Gram-negative bacteria and fungi. In this study, the functions of LGBP from Zhikong scallop Chlamys farreri performed in innate immunity were analyzed. Firstly, the mRNA expression of CfLGBP in hemocytes toward three typical PAMPS stimulation was examined by realtime PCR. It was up-regulated extremely (P < 0.01) post stimulation of LPS and beta-glucan, and also exhibited a moderate up-regulation (P < 0.01) after PGN injection. Further PAMPs binding assay with the polyclonal antibody specific for CfLGBP proved that the recombinant CfLGBP (designated as rCfLGBP) could bind not only LPS and beta-glucan, but also PGN in vitro. More importantly, rCfLGBP exhibited obvious agglutination activity towards Gram-negative bacteria Escherichia coil, Gram-positive bacteria Bacillus subtilis and fungi Pichia pastoris. Taking the results of immunofluorescence assay into account, which displayed CfLGBP was expressed specifically in the immune cells (hemocytes) and vulnerable organ (gill and mantle), we believed that LGBP in C farreri, serving as a multi-functional PRR, not only involved in the immune response against Gram-negative and fungi as LGBP in other invertebrates, but also played significant role in the event of anti-Gram-positive bacteria infection. As the first functional research of LGBP in mollusks, our study provided new implication into the innate immune defense mechanisms of C. farreri and mollusks. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Viperin is an antiviral protein that has been found to exist in diverse vertebrate organisms and is involved in innate immunity against the infection of a wide range of viruses. However, it is largely unclear as to the potential role played by viperin in bacterial infection. In this study, we identified the red drum Sciaenops ocellatus viperin gene (SoVip) and analyzed its expression in relation to bacterial challenge. The complete gene of SoVip is 2570 bp in length and contains six exons and five introns. The open reading frame of SoVip is 1065 bp, which is flanked by a 5'-untranslated region (UTR) of 34 bp and a 3'-UTR of 350 bp. The deduced amino acid sequence of SoVip shares extensive identities with the viperins of several fish species and possesses the conserved domain of the radical S-adenosylmethionine superfamily proteins. Expressional analysis showed that constitutive expression of SoVip was relatively high in blood, muscle, brain, spleen, and liver, and low in kidney, gill, and heart. Experimental challenges with poly(I:C) and bacterial pathogens indicated that SoVip expression in liver was significantly upregulated by poly(I:C) and the fish pathogen Edwardsiella tarda but down-regulated by the fish pathogens Listonella anguillarum and Streptococcus iniae. Similar differential induction patterns were also observed at cellular level with primary hepatocytes challenged with E. tarda, L anguillarum, and S. iniae. Infection study showed that all three bacterial pathogens could attach to cultured primary hepatocytes but only E. tarda was able to invade into and survive in hepatocytes. Together these results indicate that SoVip is involved in host immune response during bacterial infection and is differentially regulated at transcription level by different bacterial pathogens. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CD83 is a transmembrane glycoprotein of the immunoglobulin (Ig) superfamily and a surface marker for fully matured dendritic cells (DCs) in humans and mice. In teleosts, DC-like cells and their molecular markers are largely unknown. In this report, we described the identification and expressional analysis of a CD83 homologue, SmCD83, from turbot Scophthalmus maximus. The open reading frame of SmCD83 is 639 bp, which is preceded by a S'-untranslated region (UTR) of 87 bp and followed by a 3'-UTR of 1111 bp. The SmCD83 gene is 4716 bp in length, which contains five exons and four introns. The deduced amino acid sequence of SmCD83 shares 40-50% overall identities with the CD83 of several fish species. Like typical CD83, SmCD83 possesses an Ig-like extracellular domain, a transmembrane domain, and a cytoplasmic domain. The conserved disulfide bond-forming cysteine residues and the N-linked glycosylation sites that are preserved in CD83 are also found in SmCD83. Expressional analysis showed that constitutive expression of SmCD83 was high in gill, blood, spleen, muscle, and kidney and low in heart and liver. Bacterial infection and poly(I:C) treatment enhanced SmCD83 expression in kidney in time-dependent manners. Likewise, bacterial challenge caused significant induction of SmCD83 expression in cultured macrophages. Vaccination of turbot with a bacterin and a purified recombinant subunit vaccine-induced significant SmCD83 expression during the first week following vaccination. These results demonstrate that SmCD83 expression correlates with microbial challenge and antigen stimulation, which suggests the possibility that there may exist in turbot DC-like antigen-presenting cells that express SmCD83 upon activation by antigen uptake. In addition, these results also suggest that SmCD83 may serve as a marker for activated macrophages in turbot. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cystatins are a superfamily of proteins as reversible inhibitor of cysteine proteinases which play essential roles in a spectrum of physiological and immunological processes In this study, a novel member of Cystatin superfamily was identified from Chinese mitten crab Enocheir sinensis (designated EsCystain) by expressed sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE) approaches The full-length cDNA of EsCystatin was of 1486 bp, consisting of a 5'-terminal untranslated region (UTR) of 92 bp, a 3' UTR of 1034 bp with a polyadenylation signal sequence AATAAA and a polyA tail, and an open reading frame (ORF) of 360 bp encoded a polypeptide of 120 amino acids with the theoretical isoelectric point of 548 and the predicted molecular weight of 13 39 kDa. A signal Cystatin-like domain (Gly(25) to Lys(112)) was found in the putative amino acid sequences of EsCystatin Similar to other Cystatins, the conserved central Q(70)VVSG(74) motif was located in the Cystatin-like domain of EsCystatin But EsCystatin lacked of signal peptide and disulphide bond. The EsCystatin exhibited homology with the other known Cystatins from invertebrates and higher vertebrates, and it was clustered into Cystatin family 1 in the phylogenetic tree. The mRNA transcripts of EsCystain were mainly expressed in hemolymph, gill, hepatopancreas, gonad and muscle, and also marginally detectable in heart After Listonella anguillarum challenge, the relative expression level of EsCystatin in hemolymph was down-regulated to 0 6-fold (P < 0.05) at 3 h post-challenge. Subsequently, it was up-regulated to 3.0-fold (P < 0.01)at 24 h Afterwards. EsCystatin mRNA transcripts suddenly decreased to original level. After Pichia pastoris GS115 challenge, its mRNA expression level in hemolymph was up-regulated to the peak at 3 h (2 8-fold of that in blank (P < 0 01)) The cDNA fragment encoding the mature peptide of EsCystatin was recombined and expressed in Escherichia coli Rosetta-gami (DE3). The recombinant EsCystatin displayed a promoter inhibitory activity against papain When the concentration of EsCystatin protein was of 300 mu g mL(-1), almost 89% of papain activity could be inhibited. These results collectively suggested that EsCystatin was a novel member of protein in Cystatin family, was a potent inhibitor of papain and involved in immune response versus invading microorganisms. (C) 2010 Elsevier Ltd All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hsp70 proteins are a family of molecular chaperones that are involved in many aspects of protein homeostasis. In this study, an Hsp70 homologue (SoHsp70) was identified from red drum Sciaenops ocellatus and analyzed at molecular level. The open reading frame of SoHsp70 is 1920 bp and intronless, with a 5'-untranslated region (UTR) of 399 bp and a 3'-UTR of 241 bp. The deduced amino acid sequence of SoHsp70 shares 84-92% overall identities with the Hsp70s of a number of fish species. In silico analysis identified in SoHsp70 three conserved Hsp70 domains involved in nucleotide and substrate binding. The coding sequence of SoHsp70 was subcloned into Escherichia coli, from which recombinant SoHsp70 was purified and, upon ATPase assay, found to exhibit apparent ATPase activity. Expressional analysis showed that constitutive expression of SoHsp70 was detectable in heart, liver, spleen, kidney, brain, blood, and gill. Experimental challenges with poly(I:C) and bacterial pathogens of Gram-positive and Gram-negative nature induced SoHsp70 expression in kidney to different levels. Stress-responsive analysis of SoHsp70 expression in primary cultures of red drum hepatocytes showed that acute heat shock treatment elicited a rapid induction of SoHsp70 expression which appeared after 10 min and 30 min of treatment. Exposure of hepatocytes separately to iron, copper, mercury, and hydrogen peroxide significantly unregulated SoHsp70 expression in time-dependent manners. Vaccination of red drum with a Streptococcus iniae bacterin was also found to induce SoHsp70 expression. Furthermore, recombinant SoHsp70 enhanced the immunoprotective effect of a subunit vaccine. Taken together, these results suggest that SoHsp70 is a stress-inducible protein that is likely to play a role in immunity and in coping with environmental and biological stresses. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The globular C1q-domain-containing (C1qDC) proteins are a family of versatile pattern recognition receptors via their globular C1q (gC1q) domain to bind various ligands including several PAMPs on pathogens. In this study, a new gC1q-domain-containing protein (AiC1qDC-1) gene was cloned from Argopecten irradians by rapid amplification of cDNA ends (RACE) approaches and expressed sequence tag (EST) analysis. The full-length cDNA of AiC1qDC-1 was composed of 733 bp, encoding a signal peptide of 19 residues and a typical gC1q domain of 137 residues containing all eight invariant amino acids in human C1qDC proteins and seven aromatic residues essential for effective packing of the hydrophobic core of AiC1qDC-1. The gC1q domain of AiC1qDC-1, which possessed the typical 10-stranded beta-sandwich fold with a jelly-roll topology common to all C1q family members, showed high homology not only to those of Cl qDC proteins in mollusk but also to those of C1qDC proteins in human. The AiC1qDC-1 transcripts were mainly detected in the tissue of hepatopancreas and also marginally detectable in adductor, heart, mantle, gill and hemocytes by fluorescent quantitative real-time PCR. In the microbial challenge experiment, there was a significant up-regulation in the relative expression level of AiC1qDC-1 in hepatopancreas and hemocytes of the scallops challenged by fungi Pichia pastoris GS115, Gram-positive bacteria Micrococcus luteus and Gram-negative bacteria Listonella anguillarum. The recombinant AiC1qDC-1 (rAiC1qDC-1) protein displayed no obvious agglutination against M. luteus and L. anguillarum, but it aggregated P. pastoris remarkably. This agglutination could be inhibited by D-mannose and PGN but not by LPS, glucan or D-galactose. These results indicated that AiC1qDC-1 functioned as a pattern recognition receptor in the immune defense of scallops against pathogens and provided clues for illuminating the evolution of the complement classical pathway. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serine proteinase homologues (SPHs), as one of prophenoloxiase-activating factors (PPAFs), play critical roles in innate immunity of crabs. Based on an EST from the eyestalk full length cDNA library, the complete cDNA (designated as PtSPH) and genomic DNA of SPH from the swimming crab Portunus trituberculatus were cloned in this study. The estimated molecular weight of mature PtSPH (354 amino acids) was 38.7 kDa and its isoelectric point was 5.08. Multiple sequence alignment revealed that PtSPH lacked a catalytic residue with a substitution of Ser in the active site triad to Gly. Phylogenetic analysis indicated PtSPH together with PPAFs of Callinectes sapidus (AAS60227), Eriocheir sinensis (ACU65942), Penaeus monodon (ABE03741, ACP19563) and Pacifastacus leniusculus (ACB41380), formed a distinct cluster which only included clip-SPHs. As the first analyzed genomic structure of PPAFs in crustaceans, two introns were found in the open reading frame region of this gene. The mRNA transcripts of PtSPH could be detected in all the examined tissues, and were higher expressed in the eyestalk than that in gill, hepatopancreas, haemocytes and muscle. Accompanied with the change in phenoloxidase (PO) activity and total haemocyte counts, the temporal expression of PtSPH gene in haemocytes after Vibrio alginolyticus challenge demonstrated a clear time-dependent expression pattern with two peaks within the experimental period of 32 h. These findings suggest that PtSPH is involved in the antibacterial defense mechanism of Portunus tritubercualtus crab. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peptidoglycan recognition protein (PGRP) is an essential molecule in innate immunity for both invertebrates and vertebrates, owing to its prominent ability in detecting and eliminating the invading bacteria. Several PGRPs have been identified from mollusk, but their functions and the underlined mechanism are still unclear. In the present study, the mRNA expression profiles, location, and possible functions of PGRP-S1 from Zhikong scallop Chlamys farreri (CfPG RP-St) were analyzed. The CfPGRP-S1 protein located in the mantle, gill, kidney and gonad of the scallops. Its mRNA expression in hemocytes was up-regulated extremely after PGN stimulation (P < 0.01), while moderately after the stimulations of LPS (P < 0.01) and beta-glucan (P < 0.05). The recombinant protein of CfPGRP-S1 (designated as rCfPGRP-S1) exhibited high affinity to PGN and moderate affinity to LPS, but it did not bind beta-glucan. Meanwhile, rCfPGRP-S1 also exhibited strong agglutination activity to Gram-positive bacteria Micrococcus luteus and Bacillus subtilis and weak activity to Gram-negative bacteria Escherichia coli. More importantly, rCfPGRP-S1 functioned as a bactericidal amidase to degrade PGN and strongly inhibit the growth of E. coli and Staphyloccocus aureus in the presence of Zn2+. These results indicated that CfPGRP-S1 could not only serve as a pattern recognition receptor recognizing bacterial PGN and LPS, but also function as a scavenger involved in eliminating response against the invaders. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cystatins form a large family of cysteine protease inhibitors found in a wide arrange of organisms. Studies have indicated that mammalian cystatins play important roles under both physiological and pathological conditions. However, much less is known about fish cystatins. In this report, we described the identification and analysis of a cystatin B homologue, SmCytB, from turbot Scophthalmus maximus. The open reading frame of SmCytB is 300 bp, which encodes a 99-residue protein that shares high levels of sequence identities with the cystatin B of a number of fish species and contains the conserved cysteine protease inhibitor motif of cystatin B. Constitutive expression of SmCytB is high in muscle, brain, heart and liver, and low in spleen. blood, gill and kidney. Bacterial infection upregulates SmCytB expression in kidney, spleen, liver and brain but not in muscle or heart. Functional analysis showed that recombinant SmCytB purified from Escherichia colt exhibits apparent cysteine protease inhibitor activity. Transient overexpression of SmCytB in head kidney macrophages enhances macrophage bactericidal activity probably through a nitric oxide-independent mechanism. These results indicate that SmCytB is involved in the immune defense of turbot against bacterial infection. (C) 2010 Elsevier Ltd. All rights reserved.