942 resultados para GIANT MAGNETORESISTANCE
Resumo:
Manganese superoxide dismutase (MnSOD) plays an important role in crustacean immune defense reaction by eliminating oxidative stress. Knowledge on MnSOD at molecular level allows us to understand its regulatory mechanism in crustacean immune system. A novel mitochondrial manganese superoxide dismutase (mMnSOD) was cloned from hepatopancreas of Chinese shrimp Fenneropenaeus chinensis by 3' and 5' rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA consists of 1185 bp with a 660 bp open reading frame, encoding 220 amino acids. The deduced amino acid sequence contains a putative signal peptide of 20 amino acids. Sequence comparison showed that the mMnSOD of F. chinensis shares 88% and 82% identity with that of giant freshwater prawn Macrobrachium rosenbergii and blue crab Callinectes sapidus, respectively. mMnSOD transcripts were detected in hepatopancreas, hemocytes, lymphoid organ, intestine, ovary, muscle and gill by Northern blotting. RT-PCR analysis indicated that mMnSOD showed different expression profiles in shrimp hemocytes and hepatopancreas after artificial infection with while spot syndrome virus (WSSV). In addition, a fusion protein containing mMnSOD was produced in vitro. LC-ESI-MS analysis showed that two peptide fragments (-GDVNTVISLAPALK- and -NVRPDYVNAIWK-) of the recombinant protein were identical to the corresponding sequence of M. rosenbergii mMnSOD, and the enzyme activity of the refolded recombinant protein was also measured. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Morphological and culture studies of tetraspores of Gracilaria lemaneiformis were carried out under laboratory conditions. Relationships of germination rate, diameter and survival rate of tetraspores from 1st generation branches with grads of temperature and irradiance were determined, respectively. The result showed that 1st generation branches is in the majority of the tetraspores shedding and tetraspores from which had highest survival rates than other parts of the sporophytic plant. The time tetraspores used developing from giant unicells to diads, which both existed on the epidermis, then to tetraspores off the matrix, was only approximately 3 weeks all through. However, tetraspores spent more than two months developing into germlings of gametophytes. It was shown that temperature variation (10, 15, 25, 30 degrees C) with the light of 30 mu mol m(-2) s(-1) had significant effects on the germination rate and diameter, but had no apparent effect on survival rate (ANOVA, P < 0.01). Germination rates of tetraspores reached the maximum at 20 degrees C, which was significantly higher than those at other temperature levels (P < 0.01), whereas 15 degrees C seemed to be optimal temperature for the diameter. All the three growth parameters (germination rate, diameter and survival rate) yield highly significant variations with irradiance treatments at room temperature (ANOVA, P < 0.01). The optimal germination rate was detected at the irradiance of 30 mu mol m(-2) s(-1) (P < 0.01). The photon flux density which exceeds 480 nnol m(-2) s(-1) have apparently negative effect on diameter and survival rate. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The northern South China Sea margin has experienced a rifting stage and a post-rifting stage during the Cenozoic. In the rifting stage, the margin received lacustrine and shallow marine facies sediments. In the post-rifting thermal subsidence, the margin accumulated shallow marine facies and hemipelagic deposits, and the deepwater basins formed. Petroleum systems of deepwater setting have been imaged from seismic data and drill wells. Two kinds of source rocks including Paleogene lacustrine black shale and Oligocene-Early Miocene mudstone were developed in the deepwater basin of the South China Sea. The deepwater reservoirs are characterized by the deep sea channel rill, mass flow complexes and drowned reef carbonate platform. Profitable capping rocks on the top are mudstones with huge thickness in the post-rifting stage. Meanwhile, the faults developed during the rifting stage provide a migration path favourable for the formation of reservoirs. The analysis of seismic and drilling data suggests that the joint structural and stratigraphic traps could form giant hydrocarbon fields and hydrocarbon reservoirs including syn-rifting graben subaqueous delta, deepwater submarine fan sandstone and reef carbonate reservoirs.
Resumo:
Diatoms are one of the predominant contributors to global carbon fixation by accounting for over 40% of total oceanic primary production and dominate export production. They play a significant role in marine biogeochemistry cycle. The diatom mat deposits are results of vast diatoms bloom. By analysis of diatom mats in 136 degrees 00'-140 degrees 00'E, 15 degrees 00'-21 degrees 00'N, Eastern Philippines Sea, we identified the species of the diatoms as giant Ethmodiscus rex (Wallich) Hendey. AMS C-14 dating shows that the sediments rich in diatom mats occurred during 16000-28600 a B.P., which means the bloom mainly occurred during the last glacial period, while there are no diatom mat deposits in other layers. Preliminary analysis indicates that Antarctic Intermediate Water (AAIW) expanded northward and brought silicate-rich water into the area, namely, silicon leakage processes caused the bloom of diatoms. In addition, the increase of iron input is one of the main reasons for the diatom bloom.
Resumo:
浮游动物在海洋生态系统物质循环和能量流动中起着至关重要的作用。浮游动物物种组成、生物量和次级生产力的变化会改变生态系统的结构和功能。在黄海生态系统中如何描述这个过程,并使它易于模拟是本论文的研究目的。生物量和生产力是海洋生态系统食物网的基础。谁是浮游动物生物量和次级生产力的基础?哪些种类在生态系统中起关键作用?这些问题在黄海这样的温带陆架边缘海区很难回答,原因是物种组成、生物量和生产力的季节变化显著。因此,在对黄海食物产出的关键过程进行模拟时,需要应用既准确又简便的方法来对浮游动物群落的生态过程进行模拟。在对黄海浮游动物群落结构和物理海洋学特征进行充分的分析之后,浮游动物功能群的方法被确定用来进行黄海生态系统结构和功能的模拟。 根据浮游动物的粒径、摄食习性和营养功能,黄海浮游动物被分为6个功能群:大型浮游甲壳动物功能群(Giant crustacean,GC)、大型桡足类功能群(Large copepods, LC)、小型桡足类功能群(Small copepods,SC)、毛颚类功能群(Chaetognaths)、水母类功能群(Medusae)和海樽类功能群(Salps)。GC、LC和SC是按照粒径大小而划分的功能群,他们是高营养层次的主要食物资源。毛颚类和水母类是两类胶质性的肉食性浮游动物功能群,他们与高营养层次竞争摄食饵料浮游动物;海樽类与其他浮游动物种类竞争摄食浮游植物,而本身的物质和能量却不能有效的传递到高营养层次。本文研究报道了浮游动物各功能群的时空分布、基于浮游动物动能群的黄海生态区划分、饵料浮游动物功能群的生产力、毛颚类对浮游动物的摄食压力以及中华哲水蚤(Calanus sinicus)的摄食生态学。 春季,浮游动物生物量为2.1 g m–2,GC、LC和SC对生物量的贡献率分别为19, 44 和 26%。高生物量的LC和SC功能群主要分布于山东半岛南岸的近岸海域,而GC主要分布在远岸站位。夏季,浮游动物的生物量为3.1 g m–2,GC贡献了73%。GC、LC和SC主要分布在黄海的中部海域。秋季,浮游动物生物量为1.8 g m–2,GC、LC和SC的贡献率相似,分别为36, 33和23%,高生物量的GC和LC分布在黄海中部,而SC主要分布在远岸站位。GC和LC是冬季浮游动物生物量(2.9 g m–2)的优势功能群,分别贡献率了57%和27%,高生物量的GC、LC和SC都分布在黄海的中部海域。与GC、LC和SC相比,毛颚类生物量较低,主要分布于黄海的中北部海域。水母类(本文中指小型水母类)和海樽类斑块分布明显,主要分布于黄海沿岸和北部海域。属于不同功能群的约10个种类为浮游动物的优势种,控制着浮游动物群落的动态。 春季,黄海可以被分成4个浮游动物生态区,浮游动物生物量的分布中心位于山东半岛南岸近岸海域,与第一个生态区相对应,LC和SC在分布中心起主要的控制作用;夏、秋和冬季,黄海分别被分成3、4和3个生态区,浮游动物生物量的分布中心均位于黄海的中部海域,均与各季节的第一个生态区相对应,GC和LC是分布中心生态区的优势功能群,对分布中心起主要的控制作用。黄海冷水团(YSCBW)在GC、LC和SC的空间分布模式中起着重要的作用。黄海不同季节浮游动物生态区的空间分布模式及生态区中起控制作用的优势功能群类别有着重要的生态学意义。 我们将饵料浮游动物功能群细化为0.16–0.25 mm、0.25–0.5 mm、0.5–1 mm、1–2 mm和 >2 mm5个粒径组。应用生物能量学的方法研究了不同粒径浮游动物的生产力。结果表明:浮游动物次级生产力5月份最高,为91.9 mg C m–2 d–1,其次是6月和9月,分别为75.6 mg C m–2 d–1和65.5 mg C m–2 d–1,8月、3月和12月较低,仅为42.3 mg C m–2 d–1、35.9 mg C m–2 d–1和27.9 mg C m–2 d–1。根据这些结果,黄海浮游动物年次级生产力为18.9 g C m–2 year–1。0.16–0.25 mm和 0.25–0.5 mm 两个粒径组对浮游动物次级生产力的贡献率为58–79%,即相对应的SC功能群的周转率(P/B, 0.091–0.193 d–1)要高于GC和LC。 黄海毛颚类功能群的优势种类为强壮箭虫(Sagitta crassa)、纳嘎箭虫(S. nagae)、肥胖箭虫(S. enflata)和百陶箭虫(S. bedoti)。我们对这四种箭虫的生产力和对浮游动物生物量和生产力的摄食压力进行了研究。结果表明:黄海毛颚类总的生物量为98–217 mg m–2,总的生产力为1.22–2.36 mg C m–2 d–1。黄海毛颚类的生物量占浮游动物总生物量的6.35–14.47%,而生产力仅占浮游动物总生产力的2.54–6.04%。强壮箭虫和纳嘎箭虫是黄海毛颚类功能群的绝对优势种,控制着黄海毛颚类群落的动态。黄海毛颚类总的摄食率为4.24–8.18 mg C m–2d–1,对浮游动物现存量和生产力总的摄食压力分别为为0.94%和12.56%。黄海冬季,浮游动物的现存量和生产力为0.4 g C m–2和0.026 g C m–2d–1,而毛颚类的摄食压力却达到了全年的最大值,为1.4%和20.94%。因此,毛颚类的摄食可能对冬季浮游动物群落结构造成重要的影响。通过不同体长组箭虫的摄食率可以推断,黄海毛颚类全年主要摄食小型桡足类,对SC功能群的摄食压力最大。但是在夏季黄海冷水团形成的月份,毛颚类对前体长为2 mm的LC功能群中的种类摄食压力也较大,但此时,由于优势种中华哲水蚤进入滞育阶段,因此毛颚类的摄食会对其种群数量造成严重的影响。 中华哲水蚤在春、秋季的摄食率分别为2.08–11.46和0.26–3.70 µg C female–1 day–1,与微型浮游生物的现存量呈显著的正相关。春季,在黄海的北部,中华哲水蚤通过摄食微型浮游生物吸收的碳量能够满足其代谢和繁殖需求,而在黄海的南部和秋季黄海冷水团锋区附近,中华哲水蚤必须通过摄食其他类型的食物资源来维持其代谢和生殖需求。较低的摄食率、无产卵以及种群中CV期桡足幼体占优势表明,秋季中华哲水蚤在黄海冷水团区域内处于滞育状态。中华哲水蚤优先摄食微型原生动物,并且春季中华哲水蚤总的生长效率(GGE, 3–39%)与食物中微型原生动物的比例呈显著的正相关,表明微型原生动物具有较高的营养价值。但是,因较低的产卵率(0.16–12.6 eggs female–1 day–1)而导致的中华哲水蚤较低的总生长效率(13.4%),可能就是由于其食物中的必需营养成分含量不足(或缺乏)造成的。 本文从生物量的角度,对黄海浮游动物各功能群的时空分布、生态区划分进行了研究报道,对GC、LC和SC功能群的生产力、毛颚类对浮游动物的摄食压力和中华哲水蚤的摄食生态学进行了较为深入的研究,这些结果为黄海食物产出的关键过程的模拟提供了基础资料。今后的研究重点应搞清楚黄海水母类对浮游动物次级生产力的摄食压力和海樽类在食物产出模型中产生的负效应的程度,浮游动物各功能群的组成、季节变化和空间分布模式的长期变化,尤其是在气候变化和人类活动的影响下,将是今后研究的重点。
Resumo:
Zooplankton plays a vital role in marine ecosystems. Variations in the zooplankton species composition, biomass, and secondary production will change the structure and function of the ecosystem. How to describe this process and make it easier to be modeled in the Yellow Sea ecosystem is the main purpose of this paper. The zooplankton functional groups approach, which is considered a good method of linking the structure of food webs and the energy flow in the ecosystems, is used to describe the main contributors of secondary produciton of the Yellow Sea ecosystem. The zooplankton can be classified into six functional groups: giant crustaceans, large copepods, small copepods, chaetognaths, medusae, and salps. The giant crustaceans, large copepods, and small copepods groups, which are the main food resources for fish, are defined depending on the size spectrum. Medusae and chaetognaths are the two gelatinous carnivorous groups, which compete with fish for food. The salps group, acting as passive filter-feeders, competes with other species feeding on phytoplankton, but their energy could not be efficiently transferred to higher trophic levels. From the viewpoint of biomass, which is the basis of the food web, and feeding activities, the contributions of each functional group to the ecosystem were evaluated; the seasonal variations, geographical distribution patterns, and species composition of each functional group were analyzed. The average zooplankton biomass was 2.1 g dry wt m(-2) in spring, to which the giant crustaceans, large copepods, and small copepods contributed 19, 44, and 26%, respectively. High biomasses of the large copepods and small copepods were distributed at the coastal waters, while the giant crustaceans were mainly located at offshore area. In summer, the mean biomass was 3.1 g dry wt m(-2), which was mostly contributed by the giant crustaceans (73%), and high biomasses of the giant crustaceans, large copepods, and small copepods were all distributed in the central part of the Yellow Sea. During autumn, the mean biomass was 1.8 g dry wt m(-2), which was similarly constituted by the giant crustaceans, large copepods, and small copepods (36, 33, and 23%, respectively), and high biomasses of the giant crustaceans and large copepods occurred in the central part of the Yellow Sea, while the small copepods were mainly located at offshore stations. The giant crustaceans and large copepods dominated the zooplankton biomass (2.9 g dry wt m(-2)) in winter, contributing respectively 57 and 27%, and they, as well as the small copepods, were all mainly located in the central part of the Yellow Sea. The chaetognaths group was mainly located in the northern part of the Yellow Sea during all seasons, but contributed less to the biomass compared with the other groups. The medusae and salps groups were distributed unevenly, with sporadic dynamics, mainly along the coastline and at the northern part of the Yellow Sea. No more than 10 species belonging to the respective functional groups dominated the zooplankton biomass and controlled the dynamics of the zooplankton community. The clear picture of the seasonal and spatial variations of each zooplankton functional group makes the complicated Yellow Sea ecosystem easier to be understood and modeled. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Six species belonging to two families of Hemichordata have previously been recorded in Chinese waters. This paper records the discovery and description of a new species of the genus Glandiceps found in Jiaozhou Bay, Qingdao, Shandong Province, named Glandiceps qingdaoensis. The new species has a long proboscis with dorsal and ventral grooves, a stomochord with a long vermiform process, a proboscis cavity with a dorsal median, right and left glomeruli, right and left glomeruli very large and encircling the stomochord, a proboscis skeleton in the cavity extends into the median posterior of the collar, a well-developed dorsal ventral muscular septum in the proboscis cavity dividing the cavity completely into two separate parts. The collar cord is without giant nerve roots. The trunk with four distinct regions that can be recognized externally: branchial-genital region, genital region, hepatic region, and intestinal region. The dorsal pharynx is large and the gill pores are small. The tongue bars are encircled by vesicles, and the first gonad commences at the level of the second or third gill slit.
Resumo:
In practice,many fracture reservoir was found,which has giant potential for exporation. For example,in limestone fracture reservoir,igneous rock fracture reservoir and shale fracture reservoir ,there are high yield oil wells found. The fracture reservoir has strong anisotropy and is very difficult to explore and produce.Since 1990’s,the techniques that use structure information and P-WAVE seismic attributes to detect fracture developed very rapidly,include stress and strain analysis,using amplitude,interval velocity,time-difference,azimuthal AVO analysis etc. Based on research and develop these advanced techniques of fracture detect,this paper selected two typical fracture reservoir as target area,according to the characters of research area,selected different techniques to pridect the fracture azimuth and density of target,and at last ,confirmed the favored area. This paper includes six parts:the first chapter mainly addresses the domestic and international research actuality about the fracture prediction and the evolement in ShengLi oil field,then according to the temporal exploration requirement,a research route was established; Based on the close relationship between structural fracture and the geotectonic movement and the procedure of rock distortion,the second chapter research the structural fracture predicting technique which is realized by computing the strain in every geotectonic movement ,which is by use of the forward and inversion of the growing history of structure; The third chapter discussed many kind of traditional techniques for fracture reservoir prediction,and point out their disadvantages.then research and develop the coherence volume computing technique which can distinguish from faults,the seismic wave absorbing technique,and other fracture predicting technique which is by use of seismic attributes ,such as azimuthal AVO FVO etc; The fourth chapter first establish the geological and petrophysical model by use of the existed log and drill well information, then research the variation of amplitude and seismic wave which is caused by fractures.based on it , the fracture predicting technique which is by use of variation of azimuthal impedance is researched;The fifth chapter is a case study,it selects shale fracture reservoir in LuoJia area as target,selects several kind of techniques to apply ,at last ,the fracture distribution of target reservoir and favored area were gotten;the sixth chapter is another case study,it selects limestone fracture reservoir in BoShen6 buried hill as target,selects several kind of techniques to apply,similarly favored area were gotten. Based on deeply research and development of the new techniques for fracture reservoir exploration, This paper selects two fracture reservoirs the most typical in ShengLi as targets to be applied ,good results show up a good application way ,which can be used for reference for future fracture exploration,and it can bring materially economic and social benefit.
Resumo:
Sulige Gasfield, with a basically proven reserve as high as one trillion cubic meters, is one giant gas field discovered in China. The major gas -bearing layers are Upper Paleozoic strata with fluvial-lacustrine sedimentary facies. Generally, gas reservoirs in this field are characteristic by "five low" properties, namely low porosity, low permeability, low formation pressure, low productivity and low gas abundance. Reservoirs in this field also feature in a large distribution area, thin single sandbody thickness, poor reservoir physical properties, thin effective reservoir thickness, sharp horizontal and/or vertical changes in reservoir properties as well as poor connectivity between different reservoirs. Although outstanding achievements have been acquired in this field, there are still several problems in the evaluation and development of the reservoirs, such as: the relation between seismic attributes and reservoir property parameters is not exclusive, which yields more than one solution in using seismic attributes to predict reservoir parameters; the wave impedance distribution ranges of sandstone and mudstone are overlapped, means it is impossible to distinguish them through the application of post-stack impedance inversion; studies on seismic petrophysics, reservoir geophysical properties, wave reflection models and AVO features have a poor foundation, makes it difficult to recognize the specific differences between tight sandstone and gas-bearing sandstone and their distribution laws. These are the main reasons causing the low well drilling success rate and poor economic returns, which usually result in ineffective development and utilization of the field. Therefore, it is of great importance to perform studies on identification and prediction of effective reservoirs in low permeable sandstone strata. Taking the 2D and 3D multiwave-multicomponent seismic exploration block in Su6-Su5 area of Sulige field as a study area and He 8 member as target bed, analysis of the target bed sedimentary characteristics and logging data properties are performed, while criteria to identify effective reservoirs are determined. Then, techniques and technologies such as pre-stack seismic information (AVO, elastic impedance, wave-let absorption attenuation) and Gamma inversion, reservoir litological and geophysical properties prediction are used to increase the precision in identifying and predicting effective reservoirs; while P-wave and S-wave impedance, ratio of P/S wave velocities, rock elastic parameters and elastic impedance are used to perform sandstone gas-bearing property identification and gas reservoir thickness prediction. Innovative achievements are summarized as follows: 1. The study of this thesis is the first time that multiwave-multicomponent seismic data are used to identify and predict non-marine classic reservoirs in China. Through the application of multiwave-multicomponents seismic data and integration of both pre-stack and post-stack seismic data, a set of workflows and methods to perform high-precision prediction of effective reservoirs in low permeable sandstone is established systematically. 2. Four key techniques to perform effective reservoir prediction including AVO analysis, pre-stack elastic wave impedance inversion, elastic parameters inversion, and absorption attenuation analysis are developed, utilizing pre-stack seismic data to the utmost and increasing the correct rate for effective reservoir prediction to 83% from the former 67% with routine methods. 3. This thesis summarizes techniques and technologies used in the identification reservoir gas-bearing properties using multiwave-multicomponent seismic data. And for the first time, quantitative analysis on reservoir fluids such as oil, gas, and/or water are carried out, and characteristic lithology prediction techniques through the integration of pre-stack and post-stack seismic prediction techniques, common seismic inversion and rock elastic parameters inversion, as well as P-wave inversion and converted wave inversion is put forward, further increasing the correct rate of effective reservoir prediction in this area to 90%. 4. Ten seismic attribute parameters are selected in the 3D multi-wave area to perform a comprehensive evaluation on effective reservoirs using weighted-factor method. The results show that the first class effective reservoir covers an area of 10.08% of the study area, while the second and the third class reservoirs take 43.8% and 46% respectively, sharply increasing the success rate for appraisal and development wells.
Resumo:
Bayan Obo giant REE-Nb-Fe deposit in the northen margin of the North China Craton (NCC) is well known in the world for its abundant rare earth element resources. There is nearly one hundred year of studying history in substance component, chronology and geochemistry of the ore deposit, since the main ore body was found in 1927. However, there still exist remarkable divergences in genesis, mineralized age and material origin. Especially the REE enrichment mechanism leaves us a secret. Recent research shows that the Bayan Obo ore deposit likely resulted from the carbonatite magma activity, which is a favorable factor for REE accumulation. Based on the analysis of tectonic evolution history of north margin of NCC this thesis mainly discussed the formation background of cratonic margined rifts in Bayan Obo, and presented the analytical results of formation environment, intrusion age and deep origin of Proterozoic carbonatite magma. These research results can provide evidence for ore genesis. LA ICP-MS U-Pb dating on zircon shows that the Neoarchean basement was mainly composed of calc-alkaline TTG gneisses (2588±16Ma). The collision orogeny movement of the northen margin of the NCC between 2.0 Ga to 1.9 Ga brought the swarm of diorite-granodiotite magma (2023±16Ma) and intense regional metamorphism event (1906.3±7.7 Ma to 1892.7±6.7 Ma). In the sequent super continent break up background, intense metamorphic and deformed basement complex was uplifted to the surface suffered denudation, forming Mesoproterozoic Bayan Obo group in the contemporary continental margin rifts. The uplift of basement complex and formation of continental rifts were likely related with mantle plume activity. Evidence from petrological and geochemical data suggests that abundant alkaline-basic magma resulted from enhancement of continental breakup activity, that separated into carbonatite veins and mafic dykes by melt immiscibility mechanism, intruded in Bayan Obo margin rifts at the late stage of extension movement. Carbonatite veins can be divided into three main types by mineral composition: dolomite carbonatite, dolomite-calcite coexistent carbonatite and calcite carbonatite. Intrusion relationship between different types of carbonatite veins show that the calcite carbonatite veins were formed latter than the dolomite type as well as the coexistent type. Moreover, geochemical data also reveals successive and evolutive character between them. The content of REE increases together with the calcite minerals component. That is to say that REE gradually accumulated as the evolution of carbonatite magma. High precision Sm-Nd isochron data shows that the intrusion age of carbonatite veins was at 1319±48Ma. Moreover, the REE mineralization age in calcite carbonatite veins was around 1275±87Ma that is consistent with the intrusion age in error range. According to these data the abundant REE already existed in the carbonatite magma before intrusion and result in the earlier ore mineralization. The average age of mineralized dolomite was at 1353±100Ma, and the mineralization age of apatite in coarse grain dolomite was around 1329±150Ma. These data is consistent with carbonatite. Considering the coincident rare, trace element and isochron composition between them, it is presumed that mineralized dolomite was also the carbonatite intrusion and was the mainly factor for huge REE enrichment.
Resumo:
Bayan Obo REE-Nb-Fe ore deposit is the largest REE deposit in the world. Owing to its unique type and tremendous economic value, this deposit has widely attracted interests from geological researchers and vast amount of scientific data have been accumulated. However, its genesis, especially ore-forming age and REE sources, have been under dispute for a long time. On the basis of previous research works, this paper mainly conducts studies on the Early Paleozoic ore-forming event in the Bayan Obo deposit. The following results and conclusions can be suggested: Sm-Nd isotopic analytical results of bastnaesite, beloeilite, albite and fluorite samples from a coarse-crystalline ore lode present an isochron age of 436±35Ma. Besides, Rb-Sr isotope dating of the coarse-crystalline biotite lode that intruded into banded ores gives an isochron age of 459±39Ma. The two ages verify the exist of Early Paleozoic ore-forming event at Bayan Obo, which characterized by extensive netted mineralization of REE fluorocarbonates, aeschynite and monazite, accompanied by widely fluorite-riebeckite-aegirine-apatite alteration. Sr-Nd isotope composition of vein minerals is located between EMI and ancient lower crust component in the ISr(t)-εNd(t) correlation diagram, indicating that there is a crustal contamination during veined mineralization. A large area late Paleozoic granitoids are distributed in the southeast region of east open pit of the mine. The granitoids intruded directly into the ore-bearing dolomite, and produced intense skarnization. Moreover, at 650-660m of the drill core on 22 line and 1598m level flat in the south of East Open Pit, we firstly found skarnization rocks. Single grain and low background Rb-Sr isochrone dating on phlogopite in skarn gives 309±12Ma. Considering the intruded contacting relationship, the late Paleozoic granitoids, already extended to the under part of REE ore bodies, must be posterior to the latest intense REE mineralization, and is only a destructive tectonic and magmatic activity. Fluid inclusion types of fluorite in the Bayan Obo deposit consist of multiphase daughter mineral-bearing inclusion, two or three phase CO2-bearing inclusion and two phase aqueous inclusion. Petrography, laser Raman analysis and microthermometry study indicate that the fluids involving in REE-Nb-Fe mineralization at Bayan Obo might be mainly of H2O-CO2-NaCl-(F-REE) system. The presence of REE-carbonate as a daughter mineral in fluid inclusions shows that the original ore-forming fluids are rich in REE elements.
Resumo:
Large earthquakes, such as the Chile earthquake in 1960 and the Sumatra-Andaman earthquake on Dec 26, 2004 in Indonesia, have generated the Earth’s free oscillations. The eigenfrequencies of the Earth’s free oscillations are closely related to the Earth’s internal structures. The conventional methods, which mainly focus on calculating the eigenfrequecies by analytical ways, and the analysis on observations can not easily study the whole processes from earthquake occurrence to the Earth’s free oscillation inspired. Therefore, we try to use numerical method incorporated with large-scale parallel computing to study on the Earth’s free oscillations excited by giant earthquakes. We first give a review of researches and developments of the Earth’s free oscillation, and basical theories under spherical coordinate system. We then give a review of the numerical simulation of seismic wave propagation and basical theories of spectral element method to simulate global seismic wave propagation. As a first step to study the Earth’s free oscillations, we use a finite element method to simulate the propagation of elastic waves and the generation of oscillations of the chime bell of Marquis Yi of Zeng, by striking different parts of the bell, which possesses the oval crosssection. The bronze chime bells of Marquis Yi of Zeng are precious cultural relics of China. The bells have a two-tone acoustic characteristic, i.e., striking different parts of the bell generates different tones. By analysis of the vibration in the bell and the spectrum analysis, we further help the understanding of the mechanism of two-tone acoustic characteristics of the chime bell of Marquis Yi of Zeng. The preliminary calculations have clearly shown that two different modes of oscillation can be generated by striking different parts of the bell, and indicate that finite element numerical simulation of the processes of wave propagation and two-tone generation of the chime bell of Marquis Yi of Zeng is feasible. These analyses provide a new quantitative and visual way to explain the mystery of the two-tone acoustic characteristics. The method suggested by this study can be applied to simulate free oscillations excited by great earthquakes with complex Earth structure. Taking into account of such large-scale structure of the Earth, small-scale low-precision numerical simulation can not simply meet the requirement. The increasing capacity in high-performance parallel computing and progress on fully numerical solutions for seismic wave fields in realistic three-dimensional spherical models, Spectral element method and high-performance parallel computing were incorporated to simulate the seismic wave propagation processes in the Earth’s interior, without the effects of the Earth’s gravitational potential. The numerical simulation shows that, the results of the toroidal modes of our calculation agree well with the theoretical values, although the accuracy of our results is much limited, the calculated peaks are little distorted due to three-dimensional effects. There exist much great differences between our calculated values of spheroidal modes and theoretical values, because we don’t consider the effect the Earth’ gravitation in numerical model, which leads our values are smaller than the theoretical values. When , is much smaller, the effect of the Earth’s gravitation make the periods of spheroidal modes become shorter. However, we now can not consider effects of the Earth’s gravitational potential into the numerical model to simulate the spheroidal oscillations, but those results still demonstrate that, the numerical simulation of the Earth’s free oscillation is very feasible. We make the numerical simulation on processes of the Earth’s free oscillations under spherically symmetric Earth model using different special source mechanisms. The results quantitatively show that Earth’s free oscillations excited by different earthquakes are different, and oscillations at different locations are different for free oscillation excited by the same earthquake. We also explore how the Earth’s medium attenuation will take effects on the Earth’s free oscillations, and take comparisons with the observations. The medium attenuation can make influences on the Earth’s free oscillations, though the effects on lower-frequency fundamental oscillations are weak. At last, taking 2008 Wenchuan earthquake for example, we employ spectral element method incorporated with large-scale parallel computing technology to investigate the characteristics of seismic wave propagation excited by Wenchuan earthquake. We calculate synthetic seismograms with one-point source model and three-point source model respectively. Full 3-D visualization of the numerical results displays the profile of the seismic wave propagation with respect to time. The three-point source, which was proposed by the latest investigations through field observation and reverse estimation, can better demonstrate the spatial and temporal characteristics of the source rupture processes than one-point source. Primary results show that those synthetic signals calculated from three-point source agree well with the observations. This can further reveal that the source rupturing process of Wenchuan earthquake is a multi-rupture process, which is composed by at least three or more stages of rupture processes. In conclusion, the numerical simulation can not only solve some problems concluding the Earth’s ellipticity and anisotropy, which can be easily solved by conventional methods, but also finally solve the problems concluding topography model and lateral heterogeneity. We will try to find a way to fully implement self-gravitation in spectral element method in future, and do our best to continue researching the Earth’s free oscillations using the numerical simulations to see how the Earth’ lateral heterogeneous will affect the Earth’s free oscillations. These will make it possible to bring modal spectral data increasingly to bear on furthering our understanding of the Earth’s three-dimensional structure.
Resumo:
Sangequan Uplift in Junggar Basin is an inherited positive structure, which has undergone many times of violent tectonic movements, with high tectonic setting, and far away from the oil-source sag, reservoir forming condition is complex. Combining sequence stratigraphy, depositional facies, reservoir formation theory with seismic and well logging analysis, this paper conducted integrated study on the hydrocarbon migration, accumulation, entrapment conditions, the reservoir forming dynamics and the forming model, and acquired the following recognition: (1) The special reservoir formation conditions that enable Sangequan Uplift to form a giant oil-gas field of over 100 million tons of reserves are as follows: (D Deltaic frontal sandbody is developed in Jurassic Xishanyao Formation, Toutunhe Formation and Lower Cretaceous Hutubihe Formation, with good reservoir quality;? Abundant hydrocarbon resources are found in Western Well Pen-1 Sag, which provides sufficient oil sources for reservoir formation of Sagequan Uplift; ?The unconformity-fault-sandbody system has formed a favorable space transporting system and an open conduit for long-distance hydrocarbon migration; ?fault, low amplitude anticline and lithological traps were well developed, providing a favorable space for hydrocarbon accumulation. (2) The most significant source beds in the Western Well Pen-1 Sag are the Mid-Permian Lower Wuerhe Formation and Lower-Permian Fengcheng Formation. The oil in the Well Block Lu-9 and Shinan Oilfield all originated from the hydrocarbon source beds of Fengcheng Formation and Lower Wuerhe Formation in the Western Well Pen-1 Sag and migrated through Jidong and Jinan deep faults linking unconformity of different regions from sources to structural highs of the uplift and shallow horizons. (3) There were 2 reservoir formation periods in District Sangequan: the first was in late Cretaceous during which the upper part of Xishanyao Formation and Toutunhe Formation; the second was in Triassic, the main resources are high-maturity oil and gas from Fengcheng Formation and Wuerhe Formation in Western Pen-1 Well sag and the gas from coal measure strata of Xishanyao Formation, that were accumulated in Hutubihehe Formation. (4) Model of the hydrocarbon migration, accumulation, reservoir formation of the study area are categorized as three types starting from the hydrocarbon source areas, focusing on the faults and unconformity and aiming at reservoirs: ① Model of accumulation and formation of reservoir through faults or unconformities along the "beam" outside source; ②Model of migration, accumulation and reservoir formation through on-slope near source;③Model of migration, accumulation and reservoir formation of marginal mid-shallow burial biogas-intermediate gas. (5) Pinchout, overlap and lithologic traps are developed in transitional zones between Western Well Pen-1 sag and Luliang uplift. Many faulted blocks and faulted nose-like traps are associated with large structures on Sangequan uplift. Above traps will be new prospecting areas for further hydrocarbon exploration in future.
Resumo:
The research area of this paper covers the maximum exploration projects of CNPC, including Blocks 1/2/4 and Block 6 of the Muglad basin and the Melut basin in Bocks 3/7 in Sudan. Based on the study of the evolution history of the Central African Shear Zone (CASZ), structural styles and filling characteristics of the rift basins, it is put forward that the rift basins in Sudan are typical passive rift basins undergoing the strike-slip, extension, compression and inversion since the Cretaceous. The three-stage rift basins overlapped obliquely. The extension and rifting during the Early Cretaceous is 50-70% of the total extension. The features of the passive rift basins decided that there is a single sedimentary cycle and one set of active source rocks within the middle. Influenced by the three-stage rifting and low thermal gradient, hydrocarbon generation and charging took place very late, and the oil pool formation mechanism is very unique from the Lower Cretaceous rift sequences to the Paleogene. The reservoir-seal assemblages are very complicated in time and space. The sealing capacity of cap rocks was controlled by the CASZ. In general the oils become heavier towards the CASZ and lighter far away. The oil biodegradation is the reason causing the high total acid number. The determination of effective reservoir depth ensures that all discovered fields up to now are high-production fields. The propagation and growth of boundary faults in the rift basins can be divided into a simple fault propagation pattern and a fault growth-linkage pattern. It is firstly found that the linkage of boundary fault segments controls the formation of petroleum systems. Three methods have been established to outline petroleum systems. And a new classification scheme of rift-type petroleum system has been put forward: pre-rift, syn-rift (including passive and active) and post-rift petroleum systems. This scheme will be very important for the further exploration of rift basins. This paper firstly established the formation models of oil pools for the passive rift basins in Sudan: the coupling of accommodation zones and main plays for the formation of giant fields. The overlapping of late rifting broke the anticlines to be several fault-blocks. This process determined that anti-fault blocks are the main traptypes in the cretaceous sequences and anticlines in the Paleogene. This can explain why the traptypes are different between the Muglad and Mefut basins, and will provide theoretic guidance for the exploration strategy. The established formation mechanism and models in this paper have had great potential guidance and promotion for the exploration in Sudan, and resulted in significant economic and social benefit. A giant field of 500 million tons oil in place was found 2003. The cost in Blocks 3/7 is only 0.25
Resumo:
The grid is a foundation of reservoir description and reservoir simulation. The scale of grid size is vital influence for the precision of reservoir simulation the gridding of reservoir parameters require reasonable interpolation method with computing quickly and accurately. The improved distant weighted interpolation method has many properties, such as logical data points selection, exact interpolation, less calculation and simply programming, and its application can improve the precision of reservoir description and reservoir simulation. The Fractal geologic statistics describes scientifically the distribution law of various geological properties in reservoir. The Fractal interpolation method is applied in grid interpolation of reservoir parameters, and the result more accorded with the geological property and configuration of reservoir, and improved the rationality and quality of interpolation calculation. Incorporating the improved distant weighted interpolation method with Fractal interpolation method during mathematical model of grid-upscaling and grid-downscaling, the softwares of GROUGH(grid-upscaling) and GFINE (grid-downscaling) were developed aiming at the questions of grid-upscaling and grid-downscaling in reservoir description and reservoir simulation. The softwares of GROUGH and GFINE initial applied in the research of fined and large-scale reservoir simulation. It obtained fined distribution of remaining oil applying grid-upscaling and grid-downscaling technique in fined reservoir simulation of Es21-2 Shengtuo oilfield, and provided strongly and scientific basis for integral and comprehensive adjustment. It's a giant tertiary oil recovery pilot area in the alkaline/surfactant/polymer flooding pilot area of west district of Gudao oilfield, and first realized fined reservoir simulation of chemical flooding using grid-upscaling and grid-downscaling technique. It has wide applied foreground and significant research value aiming at the technique of grid-upscaling and grid-downscaling in reservoir description and reservoir simulation.