880 resultados para Fuzzy Multi-Objective Linear Programming


Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]This Ph.D. thesis presents a general, robust methodology that may cover any type of 2D acoustic optimization problem. A procedure involving the coupling of Boundary Elements (BE) and Evolutionary Algorithms is proposed for systematic geometric modifications of road barriers that lead to designs with ever-increasing screening performance. Numerical simulations involving single- and multi-objective optimizations of noise barriers of varied nature are included in this document. results disclosed justify the implementation of this methodology by leading to optimal solutions of previously defined topologies that, in general, greatly outperform the acoustic efficiency of classical, widely used barrier designs normally erected near roads.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work, the multi-objective optimization by genetic algorithms is investigated and applied to heat transfer problems. Firstly, the work aims to compare different reproduction processes employed by genetic algorithms and two new promising processes are suggested. Secondly, in this work two heat transfer problems are studied under the multi-objective point of view. Specifically, the two cases studied are the wavy fins and the corrugated wall channel. Both these cases have already been studied by a single objective optimizer. Therefore, this work aims to extend the previous works in a more comprehensive study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Combinatorial Optimization is a branch of optimization that deals with the problems where the set of feasible solutions is discrete. Routing problem is a well studied branch of Combinatorial Optimization that concerns the process of deciding the best way of visiting the nodes (customers) in a network. Routing problems appear in many real world applications including: Transportation, Telephone or Electronic data Networks. During the years, many solution procedures have been introduced for the solution of different Routing problems. Some of them are based on exact approaches to solve the problems to optimality and some others are based on heuristic or metaheuristic search to find optimal or near optimal solutions. There is also a less studied method, which combines both heuristic and exact approaches to face different problems including those in the Combinatorial Optimization area. The aim of this dissertation is to develop some solution procedures based on the combination of heuristic and Integer Linear Programming (ILP) techniques for some important problems in Routing Optimization. In this approach, given an initial feasible solution to be possibly improved, the method follows a destruct-and-repair paradigm, where the given solution is randomly destroyed (i.e., customers are removed in a random way) and repaired by solving an ILP model, in an attempt to find a new improved solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il presente lavoro trae origine dagli obiettivi e dalle relative misure applicative della riforma dell’OCM zucchero del 2006 e nello specifico dal Piano nazionale per la razionalizzazione e riconversione della produzione bieticolo-saccarifera approvato dal MIPAF nel 2007. Lo studio riguarda la riconversione dello zuccherificio di Finale Emilia (MO), di appartenenza del Gruppo bieticolo-saccarifero Co.Pro.B, in un impianto di generazione di energia elettrica e termica che utilizza biomassa di origine agricola per la combustione diretta. L'alimentazione avviene principalmente dalla coltivazione dedicata del sorgo da fibra (Sorghum bicolor), integrata con risorse agro-forestali. Lo studio mostra la necessità di coltivazione di 4.400 ettari di sorgo da fibra con una produzione annua di circa 97.000 t di prodotto al 75% di sostanza secca necessari per l’alimentazione della centrale a biomassa. L’obiettivo é quello di valutare l’impatto della nuova coltura energetica sul comprensorio agricolo e sulla economia dell’impresa agricola. La metodologia adottata si basa sulla simulazione di modelli aziendali di programmazione lineare che prevedono l’inserimento del sorgo da fibra come coltura energetica nel piano ottimo delle aziende considerate. I modelli predisposti sono stati calibrati su aziende RICA al fine di riprodurre riparti medi reali su tre tipologie dimensionali rappresentative: azienda piccola entro i 20 ha, media da 20 a 50 ha e grande oltre i 50 ha. La superficie di entrata a livello aziendale, se rapportata alla rappresentatività delle aziende dell’area di studio, risulta insufficiente per soddisfare la richiesta di approvvigionamento dell’impianto a biomassa. Infatti con tale incremento la superficie di coltivazione nel comprensorio si attesta sui 2.500 ettari circa contro i 4.400 necessari alla centrale. Lo studio mostra pertanto che occorre un incentivo superiore, di circa 80-90 €/ha, per soddisfare la richiesta della superficie colturale a livello di territorio. A questi livelli, la disponibilità della coltura energetica sul comprensorio risulta circa 9.500 ettari.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we address a collection of Network Design problems which are strongly motivated by applications from Telecommunications, Logistics and Bioinformatics. In most cases we justify the need of taking into account uncertainty in some of the problem parameters, and different Robust optimization models are used to hedge against it. Mixed integer linear programming formulations along with sophisticated algorithmic frameworks are designed, implemented and rigorously assessed for the majority of the studied problems. The obtained results yield the following observations: (i) relevant real problems can be effectively represented as (discrete) optimization problems within the framework of network design; (ii) uncertainty can be appropriately incorporated into the decision process if a suitable robust optimization model is considered; (iii) optimal, or nearly optimal, solutions can be obtained for large instances if a tailored algorithm, that exploits the structure of the problem, is designed; (iv) a systematic and rigorous experimental analysis allows to understand both, the characteristics of the obtained (robust) solutions and the behavior of the proposed algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Im Bereich sicherheitsrelevanter eingebetteter Systeme stellt sich der Designprozess von Anwendungen als sehr komplex dar. Entsprechend einer gegebenen Hardwarearchitektur lassen sich Steuergeräte aufrüsten, um alle bestehenden Prozesse und Signale pünktlich auszuführen. Die zeitlichen Anforderungen sind strikt und müssen in jeder periodischen Wiederkehr der Prozesse erfüllt sein, da die Sicherstellung der parallelen Ausführung von größter Bedeutung ist. Existierende Ansätze können schnell Designalternativen berechnen, aber sie gewährleisten nicht, dass die Kosten für die nötigen Hardwareänderungen minimal sind. Wir stellen einen Ansatz vor, der kostenminimale Lösungen für das Problem berechnet, die alle zeitlichen Bedingungen erfüllen. Unser Algorithmus verwendet Lineare Programmierung mit Spaltengenerierung, eingebettet in eine Baumstruktur, um untere und obere Schranken während des Optimierungsprozesses bereitzustellen. Die komplexen Randbedingungen zur Gewährleistung der periodischen Ausführung verlagern sich durch eine Zerlegung des Hauptproblems in unabhängige Unterprobleme, die als ganzzahlige lineare Programme formuliert sind. Sowohl die Analysen zur Prozessausführung als auch die Methoden zur Signalübertragung werden untersucht und linearisierte Darstellungen angegeben. Des Weiteren präsentieren wir eine neue Formulierung für die Ausführung mit fixierten Prioritäten, die zusätzlich Prozessantwortzeiten im schlimmsten anzunehmenden Fall berechnet, welche für Szenarien nötig sind, in denen zeitliche Bedingungen an Teilmengen von Prozessen und Signalen gegeben sind. Wir weisen die Anwendbarkeit unserer Methoden durch die Analyse von Instanzen nach, welche Prozessstrukturen aus realen Anwendungen enthalten. Unsere Ergebnisse zeigen, dass untere Schranken schnell berechnet werden können, um die Optimalität von heuristischen Lösungen zu beweisen. Wenn wir optimale Lösungen mit Antwortzeiten liefern, stellt sich unsere neue Formulierung in der Laufzeitanalyse vorteilhaft gegenüber anderen Ansätzen dar. Die besten Resultate werden mit einem hybriden Ansatz erzielt, der heuristische Startlösungen, eine Vorverarbeitung und eine heuristische mit einer kurzen nachfolgenden exakten Berechnungsphase verbindet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Klimamontoring benötigt eine operative, raum-zeitliche Analyse der Klimavariabilität. Mit dieser Zielsetzung, funktionsbereite Karten regelmäßig zu erstellen, ist es hilfreich auf einen Blick, die räumliche Variabilität der Klimaelemente in der zeitlichen Veränderungen darzustellen. Für aktuelle und kürzlich vergangene Jahre entwickelte der Deutsche Wetterdienst ein Standardverfahren zur Erstellung solcher Karten. Die Methode zur Erstellung solcher Karten variiert für die verschiedenen Klimaelemente bedingt durch die Datengrundlage, die natürliche Variabilität und der Verfügbarkeit der in-situ Daten.rnIm Rahmen der Analyse der raum-zeitlichen Variabilität innerhalb dieser Dissertation werden verschiedene Interpolationsverfahren auf die Mitteltemperatur der fünf Dekaden der Jahre 1951-2000 für ein relativ großes Gebiet, der Region VI der Weltorganisation für Meteorologie (Europa und Naher Osten) angewendet. Die Region deckt ein relativ heterogenes Arbeitsgebiet von Grönland im Nordwesten bis Syrien im Südosten hinsichtlich der Klimatologie ab.rnDas zentrale Ziel der Dissertation ist eine Methode zur räumlichen Interpolation der mittleren Dekadentemperaturwerte für die Region VI zu entwickeln. Diese Methode soll in Zukunft für die operative monatliche Klimakartenerstellung geeignet sein. Diese einheitliche Methode soll auf andere Klimaelemente übertragbar und mit der entsprechenden Software überall anwendbar sein. Zwei zentrale Datenbanken werden im Rahmen dieser Dissertation verwendet: So genannte CLIMAT-Daten über dem Land und Schiffsdaten über dem Meer.rnIm Grunde wird die Übertragung der Punktwerte der Temperatur per räumlicher Interpolation auf die Fläche in drei Schritten vollzogen. Der erste Schritt beinhaltet eine multiple Regression zur Reduktion der Stationswerte mit den vier Einflussgrößen der Geographischen Breite, der Höhe über Normalnull, der Jahrestemperaturamplitude und der thermischen Kontinentalität auf ein einheitliches Niveau. Im zweiten Schritt werden die reduzierten Temperaturwerte, so genannte Residuen, mit der Interpolationsmethode der Radialen Basis Funktionen aus der Gruppe der Neuronalen Netzwerk Modelle (NNM) interpoliert. Im letzten Schritt werden die interpolierten Temperaturraster mit der Umkehrung der multiplen Regression aus Schritt eins mit Hilfe der vier Einflussgrößen auf ihr ursprüngliches Niveau hochgerechnet.rnFür alle Stationswerte wird die Differenz zwischen geschätzten Wert aus der Interpolation und dem wahren gemessenen Wert berechnet und durch die geostatistische Kenngröße des Root Mean Square Errors (RMSE) wiedergegeben. Der zentrale Vorteil ist die wertegetreue Wiedergabe, die fehlende Generalisierung und die Vermeidung von Interpolationsinseln. Das entwickelte Verfahren ist auf andere Klimaelemente wie Niederschlag, Schneedeckenhöhe oder Sonnenscheindauer übertragbar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Khutoretsky dealt with the problem of maximising a linear utility function (MUF) over the set of short-term equilibria in a housing market by reducing it to a linear programming problem, and suggested a combinatorial algorithm for this problem. Two approaches to the market adjustment were considered: the funding of housing construction and the granting of housing allowances. In both cases, locally optimal regulatory measures can be developed using the corresponding dual prices. The optimal effects (with the regulation expenditures restricted by an amount K) can be found using specialised models based on MUF: a model M1 for choice of the optimum structure of investment in housing construction, and a model M2 for optimum distribution of housing allowances. The linear integer optimisation problems corresponding to these models are initially difficult but can be solved after slight modifications of the parameters. In particular, the necessary modification of K does not exceed the maximum construction cost of one dwelling (for M1) or the maximum size of one housing allowance (for M2). The result is particularly useful since slight modification of K is not essential in practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Despite recent algorithmic and conceptual progress, the stoichiometric network analysis of large metabolic models remains a computationally challenging problem. RESULTS: SNA is a interactive, high performance toolbox for analysing the possible steady state behaviour of metabolic networks by computing the generating and elementary vectors of their flux and conversions cones. It also supports analysing the steady states by linear programming. The toolbox is implemented mainly in Mathematica and returns numerically exact results. It is available under an open source license from: http://bioinformatics.org/project/?group_id=546. CONCLUSION: Thanks to its performance and modular design, SNA is demonstrably useful in analysing genome scale metabolic networks. Further, the integration into Mathematica provides a very flexible environment for the subsequent analysis and interpretation of the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Small-scale farmers in the Chipata District of Zambia rely on their farm fields to grow maize and groundnuts for food security. Cotton production and surplus food security crops are used to generate income to provide for their families. With increasing population pressure, available land has decreased and farmers struggle to provide the necessary food requirements and income to meet their family’s needs. The purpose of the study was to determine how a farmer can best allocate his land to produce maize, groundnuts and cotton when constrained by labor and capital resources to generate the highest potential for food security and financial gains. Data from the 2008-2009 growing season was compiled and analyzed using a linear programming model. The study determined that farmers make the most profit by allocating all additional land and resources to cotton after meeting their minimum food security requirements. The study suggests growing cotton is a beneficial practice for small-scale subsistence farmers to generate income when restricted by limited resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With proper application of Best Management Practices (BMPs), the impact from the sediment to the water bodies could be minimized. However, finding the optimal allocation of BMP can be difficult, since there are numerous possible options. Also, economics plays an important role in BMP affordability and, therefore, the number of BMPs able to be placed in a given budget year. In this study, two methodologies are presented to determine the optimal cost-effective BMP allocation, by coupling a watershed-level model, Soil and Water Assessment Tool (SWAT), with two different methods, targeting and a multi-objective genetic algorithm (Non-dominated Sorting Genetic Algorithm II, NSGA-II). For demonstration, these two methodologies were applied to an agriculture-dominant watershed located in Lower Michigan to find the optimal allocation of filter strips and grassed waterways. For targeting, three different criteria were investigated for sediment yield minimization, during the process of which it was found that the grassed waterways near the watershed outlet reduced the watershed outlet sediment yield the most under this study condition, and cost minimization was also included as a second objective during the cost-effective BMP allocation selection. NSGA-II was used to find the optimal BMP allocation for both sediment yield reduction and cost minimization. By comparing the results and computational time of both methodologies, targeting was determined to be a better method for finding optimal cost-effective BMP allocation under this study condition, since it provided more than 13 times the amount of solutions with better fitness for the objective functions while using less than one eighth of the SWAT computational time than the NSGA-II with 150 generations did.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation presents the competitive control methodologies for small-scale power system (SSPS). A SSPS is a collection of sources and loads that shares a common network which can be isolated during terrestrial disturbances. Micro-grids, naval ship electric power systems (NSEPS), aircraft power systems and telecommunication system power systems are typical examples of SSPS. The analysis and development of control systems for small-scale power systems (SSPS) lacks a defined slack bus. In addition, a change of a load or source will influence the real time system parameters of the system. Therefore, the control system should provide the required flexibility, to ensure operation as a single aggregated system. In most of the cases of a SSPS the sources and loads must be equipped with power electronic interfaces which can be modeled as a dynamic controllable quantity. The mathematical formulation of the micro-grid is carried out with the help of game theory, optimal control and fundamental theory of electrical power systems. Then the micro-grid can be viewed as a dynamical multi-objective optimization problem with nonlinear objectives and variables. Basically detailed analysis was done with optimal solutions with regards to start up transient modeling, bus selection modeling and level of communication within the micro-grids. In each approach a detail mathematical model is formed to observe the system response. The differential game theoretic approach was also used for modeling and optimization of startup transients. The startup transient controller was implemented with open loop, PI and feedback control methodologies. Then the hardware implementation was carried out to validate the theoretical results. The proposed game theoretic controller shows higher performances over traditional the PI controller during startup. In addition, the optimal transient surface is necessary while implementing the feedback controller for startup transient. Further, the experimental results are in agreement with the theoretical simulation. The bus selection and team communication was modeled with discrete and continuous game theory models. Although players have multiple choices, this controller is capable of choosing the optimum bus. Next the team communication structures are able to optimize the players’ Nash equilibrium point. All mathematical models are based on the local information of the load or source. As a result, these models are the keys to developing accurate distributed controllers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While revenue management (RM) is traditionally considered a tool of service operations, RM shows considerable potential for application in manufacturing operations. The typical challenges in make-to-order manufacturing are fixed manufacturing capacities and a great variety in offered products, going along with pronounced fluctuations in demand and profitability. Since Harris and Pinder in the mid-90s, numerous papers have furthered the understanding of RM theory in this environment. Nevertheless, results to be expected from applying the developed methods to a practical industry setting have yet to be reported. To this end, this paper investigates a possible application of RM at ThyssenKrupp VDM, leading to considerable improvements in several areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In reverse logistics networks, products (e.g., bottles or containers) have to be transported from a depot to customer locations and, after use, from customer locations back to the depot. In order to operate economically beneficial, companies prefer a simultaneous delivery and pick-up service. The resulting Vehicle Routing Problem with Simultaneous Delivery and Pick-up (VRPSDP) is an operational problem, which has to be solved daily by many companies. We present two mixed-integer linear model formulations for the VRPSDP, namely a vehicle-flow and a commodity-flow model. In order to strengthen the models, domain-reducing preprocessing techniques, and effective cutting planes are outlined. Symmetric benchmark instances known from the literature as well as new asymmetric instances derived from real-world problems are solved to optimality using CPLEX 12.1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In process industries, make-and-pack production is used to produce food and beverages, chemicals, and metal products, among others. This type of production process allows the fabrication of a wide range of products in relatively small amounts using the same equipment. In this article, we consider a real-world production process (cf. Honkomp et al. 2000. The curse of reality – why process scheduling optimization problems are diffcult in practice. Computers & Chemical Engineering, 24, 323–328.) comprising sequence-dependent changeover times, multipurpose storage units with limited capacities, quarantine times, batch splitting, partial equipment connectivity, and transfer times. The planning problem consists of computing a production schedule such that a given demand of packed products is fulfilled, all technological constraints are satisfied, and the production makespan is minimised. None of the models in the literature covers all of the technological constraints that occur in such make-and-pack production processes. To close this gap, we develop an efficient mixed-integer linear programming model that is based on a continuous time domain and general-precedence variables. We propose novel types of symmetry-breaking constraints and a preprocessing procedure to improve the model performance. In an experimental analysis, we show that small- and moderate-sized instances can be solved to optimality within short CPU times.