973 resultados para Football|Game position
Resumo:
La hiérarchie de Wagner constitue à ce jour la plus fine classification des langages ω-réguliers. Par ailleurs, l'approche algébrique de la théorie de langages formels montre que ces ensembles ω-réguliers correspondent précisément aux langages reconnaissables par des ω-semigroupes finis pointés. Ce travail s'inscrit dans ce contexte en fournissant une description complète de la contrepartie algébrique de la hiérarchie de Wagner, et ce par le biais de la théorie descriptive des jeux de Wadge. Plus précisément, nous montrons d'abord que le degré de Wagner d'un langage ω-régulier est effectivement un invariant syntaxique. Nous définissons ensuite une relation de réduction entre ω-semigroupes pointés par le biais d'un jeu infini de type Wadge. La collection de ces structures algébriques ordonnée par cette relation apparaît alors comme étant isomorphe à la hiérarchie de Wagner, soit un quasi bon ordre décidable de largeur 2 et de hauteur ω. Nous exposons par la suite une procédure de décidabilité de cette hiérarchie algébrique : on décrit une représentation graphique des ω-semigroupes finis pointés, puis un algorithme sur ces structures graphiques qui calcule le degré de Wagner de n'importe quel élément. Ainsi le degré de Wagner de tout langage ω-régulier peut être calculé de manière effective directement sur son image syntaxique. Nous montrons ensuite comment construire directement et inductivement une structure de n''importe quel degré. Nous terminons par une description détaillée des invariants algébriques qui caractérisent tous les degrés de cette hiérarchie. Abstract The Wagner hierarchy is known so far to be the most refined topological classification of ω-rational languages. Also, the algebraic study of formal languages shows that these ω-rational sets correspond precisely to the languages recognizable by finite pointed ω-semigroups. Within this framework, we provide a construction of the algebraic counterpart of the Wagner hierarchy. We adopt a hierarchical game approach, by translating the Wadge theory from the ω-rational language to the ω-semigroup context. More precisely, we first show that the Wagner degree is indeed a syntactic invariant. We then define a reduction relation on finite pointed ω-semigroups by means of a Wadge-like infinite two-player game. The collection of these algebraic structures ordered by this reduction is then proven to be isomorphic to the Wagner hierarchy, namely a well-founded and decidable partial ordering of width 2 and height $\omega^\omega$. We also describe a decidability procedure of this hierarchy: we introduce a graph representation of finite pointed ω-semigroups allowing to compute their precise Wagner degrees. The Wagner degree of every ω-rational language can therefore be computed directly on its syntactic image. We then show how to build a finite pointed ω-semigroup of any given Wagner degree. We finally describe the algebraic invariants characterizing every Wagner degree of this hierarchy.
Resumo:
Position sensitive particle detectors are needed in high energy physics research. This thesis describes the development of fabrication processes and characterization techniques of silicon microstrip detectors used in the work for searching elementary particles in the European center for nuclear research, CERN. The detectors give an electrical signal along the particles trajectory after a collision in the particle accelerator. The trajectories give information about the nature of the particle in the struggle to reveal the structure of the matter and the universe. Detectors made of semiconductors have a better position resolution than conventional wire chamber detectors. Silicon semiconductor is overwhelmingly used as a detector material because of its cheapness and standard usage in integrated circuit industry. After a short spread sheet analysis of the basic building block of radiation detectors, the pn junction, the operation of a silicon radiation detector is discussed in general. The microstrip detector is then introduced and the detailed structure of a double-sided ac-coupled strip detector revealed. The fabrication aspects of strip detectors are discussedstarting from the process development and general principles ending up to the description of the double-sided ac-coupled strip detector process. Recombination and generation lifetime measurements in radiation detectors are discussed shortly. The results of electrical tests, ie. measuring the leakage currents and bias resistors, are displayed. The beam test setups and the results, the signal to noise ratio and the position accuracy, are then described. It was found out in earlier research that a heavy irradiation changes the properties of radiation detectors dramatically. A scanning electron microscope method was developed to measure the electric potential and field inside irradiated detectorsto see how a high radiation fluence changes them. The method and the most important results are discussed shortly.
Resumo:
In this paper we present a model of representative behavior in the dictator game. Individuals have simultaneous and non-contradictory preferences over monetary payoffs, altruistic actions and equity concerns. We require that these behaviors must be aggregated and founded in principles of representativeness and empathy. The model results match closely the observed mean split and replicate other empirical regularities (for instance, higher stakes reduce the willingness to give). In addition, we connect representative behavior with an allocation rule built on psychological and behavioral arguments. An approach consistently neglected in this literature. Key words: Dictator Game, Behavioral Allocation Rules, Altruism, Equity Concerns, Empathy, Self-interest JEL classification: C91, D03, D63, D74.