854 resultados para Food -- Analysis
Resumo:
As the world`s population is constantly growing, food security will remain on the policy Agenda, particularly in Africa. At the same time, global food systems experience a new wave focusing on local foods and food sovereignty featuring high quality food products of verifiable geographical origin. This article argues that Geographical Indications (GI´s) hold the potential to help transform the Tanzanian agriculture-dependent economy through the tapping of value from unique products, attributing taste and colour to place or regional geography. This study aims to identify the existence and characteristics of food origin products in Tanzania that have potential for GI certification. The hypothesis was that there are origin products in Tanzania whose unique characteristics are linked to the area of production. Geographical indications can be useful policy instruments contributing to food security and sovereignty and quality within an efficient marketing system with the availability of government support, hence the need to identify key candidates for GI certification. Five Tanzanian origin products were selected from 14 candidate agricultural products through a scoping study. Rice from Kyela, Aloe vera, Coffee and Sugar from Kilimanjaro and Cloves from Zanzibar are some of the product cases investigated and provides for in-depth case study, as ´landscape´ products incorporating ´taste of place´. Interviews were conducted to collect quantitative and qualitative data. Data was collected on the production area, product quality perceived by the consumer in terms of taste, flavour, texture, aroma, appearance (colour, size) and perceptions of links between geography related factors (soil, land weather characteristics) and product qualities. A qualitative case study analysis was done for each of the (five) selected Tanzanian origin products investigated with plausible prospects for Tanzania to leapfrog into exports of Geographical Indications products. Framework conditions for producers creating or capturing market value as stewards of cultural and landscape values, environments, and institutional requirements for such creation or capturing to happen, including presence of export opportunities, are discussed. Geographical indication is believed to allow smallholders to create employment and build monetary value, while stewarding local food cultures and natural environments and resources, and increasing the diversity of supply of natural and unique quality products and so contribute to enhanced food security.
Resumo:
La spectrométrie de masse mesure la masse des ions selon leur rapport masse sur charge. Cette technique est employée dans plusieurs domaines et peut analyser des mélanges complexes. L’imagerie par spectrométrie de masse (Imaging Mass Spectrometry en anglais, IMS), une branche de la spectrométrie de masse, permet l’analyse des ions sur une surface, tout en conservant l’organisation spatiale des ions détectés. Jusqu’à présent, les échantillons les plus étudiés en IMS sont des sections tissulaires végétales ou animales. Parmi les molécules couramment analysées par l’IMS, les lipides ont suscité beaucoup d'intérêt. Les lipides sont impliqués dans les maladies et le fonctionnement normal des cellules; ils forment la membrane cellulaire et ont plusieurs rôles, comme celui de réguler des événements cellulaires. Considérant l’implication des lipides dans la biologie et la capacité du MALDI IMS à les analyser, nous avons développé des stratégies analytiques pour la manipulation des échantillons et l’analyse de larges ensembles de données lipidiques. La dégradation des lipides est très importante dans l’industrie alimentaire. De la même façon, les lipides des sections tissulaires risquent de se dégrader. Leurs produits de dégradation peuvent donc introduire des artefacts dans l’analyse IMS ainsi que la perte d’espèces lipidiques pouvant nuire à la précision des mesures d’abondance. Puisque les lipides oxydés sont aussi des médiateurs importants dans le développement de plusieurs maladies, leur réelle préservation devient donc critique. Dans les études multi-institutionnelles où les échantillons sont souvent transportés d’un emplacement à l’autre, des protocoles adaptés et validés, et des mesures de dégradation sont nécessaires. Nos principaux résultats sont les suivants : un accroissement en fonction du temps des phospholipides oxydés et des lysophospholipides dans des conditions ambiantes, une diminution de la présence des lipides ayant des acides gras insaturés et un effet inhibitoire sur ses phénomènes de la conservation des sections au froid sous N2. A température et atmosphère ambiantes, les phospholipides sont oxydés sur une échelle de temps typique d’une préparation IMS normale (~30 minutes). Les phospholipides sont aussi décomposés en lysophospholipides sur une échelle de temps de plusieurs jours. La validation d’une méthode de manipulation d’échantillon est d’autant plus importante lorsqu’il s’agit d’analyser un plus grand nombre d’échantillons. L’athérosclérose est une maladie cardiovasculaire induite par l’accumulation de matériel cellulaire sur la paroi artérielle. Puisque l’athérosclérose est un phénomène en trois dimension (3D), l'IMS 3D en série devient donc utile, d'une part, car elle a la capacité à localiser les molécules sur la longueur totale d’une plaque athéromateuse et, d'autre part, car elle peut identifier des mécanismes moléculaires du développement ou de la rupture des plaques. l'IMS 3D en série fait face à certains défis spécifiques, dont beaucoup se rapportent simplement à la reconstruction en 3D et à l’interprétation de la reconstruction moléculaire en temps réel. En tenant compte de ces objectifs et en utilisant l’IMS des lipides pour l’étude des plaques d’athérosclérose d’une carotide humaine et d’un modèle murin d’athérosclérose, nous avons élaboré des méthodes «open-source» pour la reconstruction des données de l’IMS en 3D. Notre méthodologie fournit un moyen d’obtenir des visualisations de haute qualité et démontre une stratégie pour l’interprétation rapide des données de l’IMS 3D par la segmentation multivariée. L’analyse d’aortes d’un modèle murin a été le point de départ pour le développement des méthodes car ce sont des échantillons mieux contrôlés. En corrélant les données acquises en mode d’ionisation positive et négative, l’IMS en 3D a permis de démontrer une accumulation des phospholipides dans les sinus aortiques. De plus, l’IMS par AgLDI a mis en évidence une localisation différentielle des acides gras libres, du cholestérol, des esters du cholestérol et des triglycérides. La segmentation multivariée des signaux lipidiques suite à l’analyse par IMS d’une carotide humaine démontre une histologie moléculaire corrélée avec le degré de sténose de l’artère. Ces recherches aident à mieux comprendre la complexité biologique de l’athérosclérose et peuvent possiblement prédire le développement de certains cas cliniques. La métastase au foie du cancer colorectal (Colorectal cancer liver metastasis en anglais, CRCLM) est la maladie métastatique du cancer colorectal primaire, un des cancers le plus fréquent au monde. L’évaluation et le pronostic des tumeurs CRCLM sont effectués avec l’histopathologie avec une marge d’erreur. Nous avons utilisé l’IMS des lipides pour identifier les compartiments histologiques du CRCLM et extraire leurs signatures lipidiques. En exploitant ces signatures moléculaires, nous avons pu déterminer un score histopathologique quantitatif et objectif et qui corrèle avec le pronostic. De plus, par la dissection des signatures lipidiques, nous avons identifié des espèces lipidiques individuelles qui sont discriminants des différentes histologies du CRCLM et qui peuvent potentiellement être utilisées comme des biomarqueurs pour la détermination de la réponse à la thérapie. Plus spécifiquement, nous avons trouvé une série de plasmalogènes et sphingolipides qui permettent de distinguer deux différents types de nécrose (infarct-like necrosis et usual necrosis en anglais, ILN et UN, respectivement). L’ILN est associé avec la réponse aux traitements chimiothérapiques, alors que l’UN est associé au fonctionnement normal de la tumeur.
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
We examined how international food price shocks have impacted local ination processes in Brazil, Chile, Colombia, Mexico, and Peru in the past decade -- Using impulse-response analysis coming from cointegrated VARs, we wind that international food ination shocks take from one to six quarters to pass through to domestic head-line ination, depending on the country -- In addition, by calculating the elasticity of local prices to an international food price shock, we found that this pass-through is not complete -- We also take a closer look at how this type of shock affects local food and core prices separately, and asses the possibility second round effects over core ination stemming from the shock -- We wind that a transmission to headline prices does occur, and that part of the transmission is associated with rising core prices both directly and through possible second round effects, which implies a role for monetary policy when such a shock takes place -- This is especially relevant given that international food prices have recently been on an upward trend after falling considerably during the Great Recession
Resumo:
OLIVEIRA, E. L. et al. Use of Fibres obtained from the Cashew (Anacardium ocidentale, L) and Guava (Psidium guayava) Fruits for Enrichment of Food Products. Brazilian Archives of Biology and Technology, Curitiba, PR, v. 48, p. 143-150, 2005.
Resumo:
Resource management policies are frequently designed and planned to target specific needs of particular sectors, without taking into account the interests of other sectors who share the same resources. In a climate of resource depletion, population growth, increase in energy demand and climate change awareness, it is of great importance to promote the assessment of intersectoral linkages and, by doing so, understand their effects and implications. This need is further augmented when common use of resources might not be solely relevant at national level, but also when the distribution of resources ranges over different nations. This dissertation focuses on the study of the energy systems of five south eastern European countries, which share the Sava River Basin, using a water-food(agriculture)-energy nexus approach. In the case of the electricity generation sector, the use of water is essential for the integrity of the energy systems, as the electricity production in the riparian countries relies on two major technologies dependent on water resources: hydro and thermal power plants. For example, in 2012, an average of 37% of the electricity production in the SRB countries was generated by hydropower and 61% in thermal power plants. Focusing on the SRB, in terms of existing installed capacities, the basin accommodates close to a tenth of all hydropower capacity while providing water for cooling to 42% of the net capacity of thermal power currently in operation in the basin. This energy-oriented nexus study explores the dependency on the basin’s water resources of the energy systems in the region for the period between 2015 and 2030. To do so, a multi-country electricity model was developed to provide a quantification ground to the analysis, using the open-source software modelling tool OSeMOSYS. Three main areas are subject to analysis: first, the impact of energy efficiency and renewable energy strategies in the electricity generation mix; secondly, the potential impacts of climate change under a moderate climate change projection scenario; and finally, deriving from the latter point, the cumulative impact of an increase in water demand in the agriculture sector, for irrigation. Additionally, electricity trade dynamics are compared across the different scenarios under scrutiny, as an effort to investigate the implications of the aforementioned factors in the electricity markets in the region.
Resumo:
Wild berries are fundamental components of traditional diet and medicine for Native American and Alaska Native tribes and contain a diverse array of phytochemicals, including anthocyanins and proanthocyanidins, with known efficacy against metabolic disorders. Bioexploration represents a new paradigm under which bioactive preparations are screened in coordination with indigenous communities, to prepare for subsequent in-depth chemical and biological analysis. The inclusive, participatory philosophical approach utilized in bioexploration has additional benefits that could be realized in seemingly disparate areas, such as education and economics. Five species of wild Alaskan berries (Vaccinium uliginosum, V. ovalifolium, Empetrum nigrum, Rubus chamaemorus, and R. spectabilis) were tested using “Screens-to-Nature” (STN), a community-participatory approach to screen for potential bioactivity, in partnership with tribal members from three geographically distinct Alaskan villages: Akutan, Seldovia, and Point Hope. Berries were subsequently evaluated via HPLC and LC-MS2, yielding significant species and location-based variation in anthocyanins (0.9-438.6 mg eq /100g fw) and proanthocyanins (73.7-625.2 mg eq /100g fw). A-type proanthocyanidin dimers through tetramers were identified in all species tested. Berries were analyzed for in vitro and in vivo activity related to diabetes and obesity. R. spectabilis samples increased preadipocyte-factor-1 levels by 82% over control, and proanthocyanidin-rich fractions from multiple species reduced lipid accumulation in 3T3-L1 adipocytes. Furthermore, extracts of V. uliginosum and E. nigrum (Point Hope) reduced serum glucose levels in C57bl/6j mice up to 45%. The same precepts of bioexploration, especially the inclusion of indigenous community perspectives and knowledge, have relevance in other areas of study, such as education and economics. Studies have established the apathetic, low-motivational environment characteristic of many introductory science laboratory classes is detrimental to student interest, learning, and continuation in scientific education. A primary means of arresting this decline and stimulating the students’ attention and excitement is via engagement in hands-on experimentation and research. Using field workshops, the STN system is investigated as to its potential as a novel participatory educational tool, using assays centered around bioexploration and bioactive plant compounds that hold the potential to offset human health conditions. This evaluation of the STN system provided ample evidence as to its ability to augment and improve science education. Furthermore, Strengths, Weaknesses, Opportunities, and Threats (SWOT) analysis was employed as a theoretical framework to review the potential benefits and hurdles associated with developing a wild Alaskan berry commodity. Synthesizing various sources of information – including logistics and harvest costs, sources of initial capital, opportunities in the current superfruit industry, and socioeconomic factors – the development of a berry commodity proves to be a complex amalgam of competing factors which would require a delicate balance before proceeding.
Resumo:
A qualitative social and gender analysis was carried out in June 2015 in Luwingu and Mbala Districts in Northern Province, Zambia. The research explored the norms and power relations at various institutional levels that constrain certain social groups from benefiting from programmatic investments aimed at improving livelihoods, health status, and food and nutrition security within the Irish Aid Local Development Programme (IALDP). This technical paper provides a summary of the research findings, lessons learned and suggests options for action the IALDP could consider to help bring about gender transformative change in the lives and livelihoods of poor and vulnerable people.
Resumo:
Chemical speciation in foodstuffs is of uttermost importance since it is nowadays recognized that both toxicity and bioavailability of an element depend on the chemical form in which the element is present. Regarding arsenic, inorganic species are classified as carcinogenic while organic arsenic, such as arsenobetaine (AsB) or arsenocholine (AsC), is considered less toxic or even non-toxic. Coupling a High Performance Liquid Chromatographer (HPLC) with an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) combines the power of separation of the first with the selectivity and sensitivity of the second. The present work aims at developing a method, using HPLC-ICP-MS technique, to identify and quantify the chemical species of arsenic present in two food matrices, rice and fish. Two extraction methods, ultrasound and microwave, and different settings were studied. The best method was chosen based on recovery percentages. To ensure that no interconversion of species was occurring, individual spikes of each species of arsenic were made in both matrices and recovery rates were calculated. To guaranty accurate results reference material BCR-627 TUNA FISH, containing certified values for AsB and DMA, was analyzed. Chromatographic separation was achieved using an anion exchange column, HAMILTON-PRP X-100, which allowed to separate the four arsenic species for which standards were available (AsB, dimethylarsenic (DMA), arsenite (AsIII), arsenate (AsV). The mobile phase was chosen based on scientific literature and adjusted to laboratory conditions. Different gradients were studied. As a result we verified that the arsenic species present in both matrices were not the same. While in fish 90% of the arsenic present was in the form of arsenobetaine, in rice 80% of arsenic was present as DMA and 20% as inorganic arsenic.
Development of a simple and fast “DNA extraction kit” for sea food identification and marine species
Resumo:
Seafood products fraud, the misrepresentation of them, have been discovered all around the world in different forms as false labeling, species substitution, short-weighting or over glazing in order to hide the correct identity, origin or weight of the seafood products. Due to the value of seafood products such as canned tuna, swordfish or grouper, these species are the subject of the commercial fraud is mainly there placement of valuable species with other little or no value species. A similar situation occurs with the shelled shrimp or shellfish that are reduced into pieces for the commercialization. Food fraud by species substitution is an emerging risk given the increasingly global food supply chain and the potential food safety issues. Economic food fraud is committed when food is deliberately placed on the market, for financial gain deceiving consumers (Woolfe, M. & Primrose, S. 2004). As a result of the increased demand and the globalization of the seafood supply, more fish species are encountered in the market. In this scenary, it becomes essential to unequivocally identify the species. The traditional taxonomy, based primarily on identification keys of species, has shown a number of limitations in the use of the distinctive features in many animal taxa, amplified when fish, crustacean or shellfish are commercially transformed. Many fish species show a similar texture, thus the certification of fish products is particularly important when fishes have undergone procedures which affect the overall anatomical structure, such as heading, slicing or filleting (Marko et al., 2004). The absence of morphological traits, a main characteristic usually used to identify animal species, represents a challenge and molecular identification methods are required. Among them, DNA-based methods are more frequently employed for food authentication (Lockley & Bardsley, 2000). In addition to food authentication and traceability, studies of taxonomy, population and conservation genetics as well as analysis of dietary habits and prey selection, also rely on genetic analyses including the DNA barcoding technology (Arroyave & Stiassny, 2014; Galimberti et al., 2013; Mafra, Ferreira, & Oliveira, 2008; Nicolé et al., 2012; Rasmussen & Morrissey, 2008), consisting in PCR amplification and sequencing of a COI mitochondrial gene specific region. The system proposed by P. Hebert et al. (2003) locates inside the mitochondrial COI gene (cytochrome oxidase subunit I) the bioidentification system useful in taxonomic identification of species (Lo Brutto et al., 2007). The COI region, used for genetic identification - DNA barcode - is short enough to allow, with the current technology, to decode sequence (the pairs of nucleotide bases) in a single step. Despite, this region only represents a tiny fraction of the mitochondrial DNA content in each cell, the COI region has sufficient variability to distinguish the majority of species among them (Biondo et al. 2016). This technique has been already employed to address the demand of assessing the actual identity and/or provenance of marketed products, as well as to unmask mislabelling and fraudulent substitutions, difficult to detect especially in manufactured seafood (Barbuto et al., 2010; Galimberti et al., 2013; Filonzi, Chiesa, Vaghi, & Nonnis Marzano, 2010). Nowadays,the research concerns the use of genetic markers to identify not only the species and/or varieties of fish, but also to identify molecular characters able to trace the origin and to provide an effective control tool forproducers and consumers as a supply chain in agreementwith local regulations.
Resumo:
This paper applies a stochastic viability approach to a tropical small-scale fishery, offering a theoretical and empirical example of ecosystem-based fishery management approach that accounts for food security. The model integrates multi-species, multi-fleet and uncertainty as well as profitability, food production, and demographic growth. It is calibrated over the period 2006–2010 using monthly catch and effort data from the French Guiana's coastal fishery, involving thirteen species and four fleets. Using projections at the horizon 2040, different management strategies and scenarios are compared from a viability viewpoint, thus accounting for biodiversity preservation, fleet profitability and food security. The analysis shows that under certain conditions, viable options can be identified which allow fishing intensity and production to be increased to respond to food security requirements but with minimum impacts on the marine resources.
Resumo:
Living organisms are open dissipative thermodynamic systems that rely on mechanothermo-electrochemical interactions to survive. Plant physiological processes allow plants to survive by converting solar radiation into chemical energy, and store that energy in form that can be used. Mammals catabolize food to obtain energy that is used to fuel, build and repair the cellular components. The exergy balance is a combined statement of the first and second laws of thermodynamics. It provides insight into the performance of systems. In this paper, exergy balance equations for both mammal’s and green plants are presented and analyzed.
Resumo:
An accurate amplified fragment length polymorphism (AFLP) method, including three primer sets for the selective amplification step, was developed to display the phylogenetic position of Photobacterium isolates collected from salmon products. This method was efficient for discriminating the three species Photobacterium phosphoreum, Photobacterium iliopiscarium and Photobacterium kishitanii, until now indistinctly gathered in the Photobacterium phosphoreum species group known to be strongly responsible for seafood spoilage. The AFLP fingerprints enabled the isolates to be separated into two main clusters that, according to the type strains, were assigned to the two species P. phosphoreum and P. iliopiscarium. P. kishitanii was not found in the collection. The accuracy of the method was validated by using gyrB-gene sequencing and luxA-gene PCR amplification, which confirmed the species delineation. Most of the isolates of each species were clonally distinct and even those that were isolated from the same source showed some diversity. Moreover, this AFLP method may be an excellent tool for genotyping isolates in bacterial communities and for clarifying our knowledge of the role of the different members of the Photobacterium species group in seafood spoilage.
Resumo:
A Hazard Analysis and Critical Control Point (HACCP) system is a plan to reduce the risk of safety hazards in food. The HACCP System identifies potential biological, chemical and physical hazards from the time the food enters the facility to when it is served. The Hazard Analysis identifies critical control points based on the ingredients, raw materials and processes. Control measures are then identified, implemented and monitored to ensure the ongoing safety of the finished products.