978 resultados para Flexural properties
Resumo:
The partial purification of the enzyme hydrolysing FMN from extracts of greengram seeds (Phaseolus radiatus) is described. The procedures, which entailed precipitation of inert material by manganous sulfate and protamine sulfate treatment, fractional precipitation with alcohol and chromatography on CM-cellulose, afforded preparations whose specific activity was 200 times that of the initial crude extract. The preparation was comparatively specific for FMN. It also hydrolysed, to a much smaller extent, β-glycerophosphate, p-nitrophenyl phosphate and 5′-nucleotides. The differential effects of ions on the FMN and β-glycerophosphate hydrolysing activities are discussed.
Resumo:
The partial purification of the enzyme hydrolysing FMN from extracts of greengram seeds (Phaseolus radiatus) is described. The procedures, which entailed precipitation of inert material by manganous sulfate and protamine sulfate treatment, fractional precipitation with alcohol and chromatography on CM-cellulose, afforded preparations whose specific activity was 200 times that of the initial crude extract. The preparation was comparatively specific for FMN. It also hydrolysed, to a much smaller extent, β-glycerophosphate, p-nitrophenyl phosphate and 5′-nucleotides. The differential effects of ions on the FMN and β-glycerophosphate hydrolysing activities are discussed.
Resumo:
Transition-metal phosphites of cobalt and vanadium, [C4N2H12][Co(HPO3)(2)] (I), [C4N2H14][Co(HPO3)(2)] (II), [Co[C4H8N12)(H2PO3)(2)] (III),[C4N2H14][(VF)-F-III(HPO3)(2)]center dot H2O (IV), and[C3N2H5](2)[V-4(III)(H2O)(3)(HPO3)(4)(HPO4)(3)] (V), have been synthesized and characterized. Organophosphorus esters were employed to stabilize cobalt in tetrahedral coordination and also to prepare the low-dimensional structures, which are otherwise difficult to synthesize. The structures have one- (I, II, IV), two- (III) and three-dimensionally (V) extended networks built up by the linking of metal polyhedra and phosphite units. Another vanadyl phosphite, [C2N2H10][((VO)-O-IV)(3)(H2O) (HPO3)(4)]center dot H2O,([15]) was also prepared and investigated extensively by ESR, magnetic susceptibility, and other studies. All the compounds in the present study exhibit antiferromagnetic interactions. Well-established magnetic models have been used to fit the experimental data. The compounds havealso been characterized in detail by using UV/Vis spectroscopic studies.
Resumo:
The method of preparation and physicochemical properties of peroxy titanium malonate, TiO2(OOC)2CH2·3H2O are given. The reasons for the poor complexing tendency of malonic acid are discussed. The nature of the bonds between titanium and the peroxy as well as malonate groups is assigned from spectrophotometric and infra-red absorption studies.
Resumo:
We report the observation of the bottom, doubly-strange baryon Omega^-_b through the decay chain Omega^-_b -> J/psi Omega^-, where J/psi -> mu^+ mu^-, Omega^- -> Lambda K^-, and Lambda -> p pi^-, using 4.2 fb^{-1} of data from p\bar p collisions at sqrt{s}=1.96 TeV, and recorded with the Collider Detector at Fermilab. A signal is observed whose probability of arising from a background fluctuation is 4.0 * 10^{-8}, or 5.5 Gaussian standard deviations. The Omega^-_b mass is measured to be 6054.4 +/- 6.8 (stat.) +/- 0.9 (syst.) MeV/c^2. The lifetime of the Omega^-_b baryon is measured to be 1.13^{+0.53}_{-0.40}(stat.) +/- 0.02(syst.)$ ps. In addition, for the \Xi^-_b baryon we measure a mass of 5790.9 +/- 2.6(stat.) +/- 0.8(syst.) MeV/c^2 and a lifetime of 1.56^{+0.27}_{-0.25}(stat.) +/-0.02(syst.) ps. Under the assumption that the \Xi_b^- and \Omega_b^- are produced with similar kinematic distributions to the \Lambda^0_b baryon, we find sigma(Xi_b^-) B(Xi_b^- -> J/psi Xi^-)}/ sigma(Lambda^0_b) B(Lambda^0_b -> J/psi Lambda)} = 0.167^{+0.037}_{-0.025}(stat.) +/-0.012(syst.) and sigma(Omega_b^-) B(Omega_b^- -> J/psi Omega^-)/ sigma(Lambda^0_b) B(Lambda^0_b -> J/psi Lambda)} = 0.045^{+0.017}_{-0.012}(stat.) +/- 0.004(syst.) for baryons produced with transverse momentum in the range of 6-20 GeV/c.
Resumo:
The method of preparation and physicochemical properties of peroxy titanium malonate, TiO2(OOC)2CH2·3H2O are given. The reasons for the poor complexing tendency of malonic acid are discussed. The nature of the bonds between titanium and the peroxy as well as malonate groups is assigned from spectrophotometric and infra-red absorption studies.
Resumo:
Seawater aging response was investigated in marine-grade glass/epoxy, glass/vinyl ester, carbon/epoxy and carbon/vinyl ester composites with respect to water uptake, interlaminar shear strength, flexural strength, tensile strength, and tensile fracture surface observations. The reduction of mechanical properties was found to be higher in them initial stages which showed saturation in the longer durations of seawater immersion. The flexural strength and ultimate tensile strength (UTS) dropped by about 35% and 27% for glass/epoxy, 22% and 15% for glass/vinyl ester, 48% and 34% for carbon/epoxy 28%, and 21% carbon/vinyl ester composites respectively. The water uptake behavior of epoxy-based composites was inferior to that of the vinyl system.
Resumo:
In this note certain integrals involving hypergeometric functions have been evaluated in convenient and elegant forms. © 1971 Indian Academy of Sciences.
Resumo:
From symmetry considerations and using generalized Onsager relations, it is shown that 66 of the 90 magnetic classes, consisting of 29 single colour and 37 double colour ones, can exhibit what may be called the strain gyrotropic rotation. Similarly, 69 of the 90 magnetic classes, consisting of 21 single colour and 48 double colour ones, can exhibit what may be called the strain gyrotropic birefringence. A crystal in the class m3 or m3 m is interesting as it can exhibit strain gyrotropic rotation despite its being cubic and incapable of exhibiting gyrotropic rotation in the unstressed state. Similarly, a crystal in the class m3 m, is interesting as it can exhibit strain gyrotropic birefringence despite its being cubic and incapable of exhibiting gyrotropic birefringence in the unstressed state.
Resumo:
The transmission electron microscopy images of in situ prepared multiwall carbon nanotubes (MWNTs)and polyaniline (PANI) composites show that nanotubes are well dispersed in aqueous medium, and the nanofibers of PANI facilitate intertube transport. Although low temperature transport indicates variable range hopping (VRH) mechanism, the dc and ac conductivity become temperature independent as the MWNT content increases. The onset frequency for the increase in conductivity is observed to be strongly dependent on the MWNT weight percent, and the ac conductivity can be scaled onto a master curve. The negative magnetoresistance is attributed to the forward interference scattering mechanism in VRH transport. (C) 2010 American.
Resumo:
A partially purified sheep liver enzyme that hydrolyzed dinucleotides at the pyrophosphate bond was obtained by solubilizing the 18,000g sediment with n-butanol and fractionating the solubilized enzyme with acetone. The enzyme activity when measured using FAD as substrate, (FAD → FMN + AMP), was optimal at pH 9.7 and temperatures between 30 °–36 ° and at 60 °. The rate of release of FMN with time occurred with an initial lag of 30 sec, a linear increase for 1 min, and a subsequent irregular rate. In the presence of orthophosphate (Pi; 10 μImage ), FMN was released at an uniformly continuous and enhanced rate. 32Pi was not incorporated into the substrate or products. Sodium arsenate counteracted the effects of Pi. The apparent Km and Vmax were 0.133 mImage and 100 units; and 0.133 mImage and 200 units, in the absence and presence of Pi, respectively. The temperature optimum was 42 ° in the presence of Pi.Negative cooperative interactions observed at low concentrations of FAD were abolished by the addition of Pi. The inhibition by AMP was sigmoid and Pi abolished this sigmoidal response. The enzyme hydrolyzed in addition to FAD, NAD+ and NADP+. Nucleoside triphosphates were potent inhibitors of the enzyme activity. The partial inhibition of the enzyme by o-phenanthroline and by p-hydroxymercuribenzoate could be reversed by Fe2+ ions and by reduced glutathione, respectively.
Resumo:
In attempting to determine the nature of the enzyme system mediating the conversion of catechol to diphenylenedioxide 2,3-quinone, in Tecoma leaves, further purification of the enzyme was undertaken. The crude enzyme from Tecoma leaves was processed further by protamine sulfate precipitation, positive adsorption on tricalcium phosphate gel, and elution and chromatography on DEAE-Sephadex. This procedure yielded a 120-fold purified enzyme which stoichiometrically converted catechol to diphenylenedioxide 2,3-quinone. The purity of the enzyme system was assessed by polyacrylamide gel electrophoresis. The approximate molecular weight of the enzyme was assessed as 200,000 by gel filtration on Sephadex G-150. The enzyme functioned optimally at pH 7.1 and at 35 °C. The Km for catechol was determined as 4 × 10−4 Image . The enzyme did not oxidize o-dihydric phenols other than catechol and it did not exhibit any activity toward monohydric and trihydric phenols and flavonoids. Copper-chelating agents did not inhibit the enzyme activity. Copper could not be detected in the purified enzyme preparations. The purified enzyme was not affected by extensive dialysis against copper-complexing agents. It did not show any peroxidase activity and it was not inhibited by catalase. Hydrogen peroxide formation could not be detected during the catalytic reaction. The enzymatic conversion of catechol to diphenylenedioxide 2,3-quinone by the purified Tecoma leaf enzyme was suppressed by such reducing agents as GSH and cysteamine. The purified enzyme was not sensitive to carbon monoxide. It was not inhibited by thiol inhibitors. The Tecoma leaf was found to be localized in the soluble fraction of the cell. Treatment of the purified enzyme with acid, alkali, and urea led to the progressive denaturation of the enzyme.
Resumo:
W/Cr codoped Bi4Ti3O12 ceramics, Bi4Ti3-xWxO12+x+0.2 wt%Cr2O3 (BITWC, x=0-0.15), were prepared using a solid-state reaction method. The crystallographic evolution and phase analysis were distinctly determined focusing on the X-ray diffraction peak changes in (020)/(200) and (220)/(1115) diffraction planes, by which the lattice parameters, a, b, and c can be refined. The thermal variations of permittivity, dielectric loss (tan delta), impedance, and electrical conductivity properties were characterized. A decrease in the values of Curie temperature from 675 degrees to 640 degrees C and an increase in the values of the dielectric constant due to an increase of W6+/Cr3+ content were observed. The highest piezoelectric constant, d(33) of 22 pC/N, was achieved with the composition of Bi4Ti2.975W0.025O12.025+0.2 wt% Cr2O3. Also, this composition had a lower electrical conductivity than the other investigated compositions.