859 resultados para Flexible service systems
Resumo:
Many technological developments of the past two decades come with the promise of greater IT flexi-bility, i.e. greater capacity to adapt IT. These technologies are increasingly used to improve organiza-tional routines that are not affected by large, hard-to-change IT such as ERP. Yet, most findings on the interaction of routines and IT stem from contexts where IT is hard to change. Our research ex-plores how routines and IT co-evolve when IT is flexible. We review the literatures on routines to sug-gest that IT may act as a boundary object that mediates the learning process unfolding between the ostensive and the performative aspect of the routine. Although prior work has concluded from such conceptualizations that IT stabilizes routines, we qualify that flexible IT can also stimulate change because it enables learning in short feedback cycles. We suggest that, however, such change might not always materialize because it is contingent on governance choices and technical knowledge. We de-scribe the case-study method to explore how routines and flexible IT co-evolve and how governance and technical knowledge influence this process. We expect to contribute towards stronger theory of routines and to develop recommendations for the effective implementation of flexible IT in loosely coupled routines.
Resumo:
This book attempts to synthesize research that contributes to a better understanding of how to reach sustainable business value through information systems (IS) outsourcing. Important topics in this realm are how IS outsourcing can contribute to innovation, how it can be dynamically governed, how to cope with its increasing complexity through multi-vendor arrangements, how service quality standards can be met, how corporate social responsibility can be upheld and how to cope with increasing demands of internationalization and new sourcing models, such as crowdsourcing and platform-based cooperation. These issues are viewed from either the client or vendor perspective, or both. The book should be of interest to all academics and students in the fields of Information Systems, Management and Organization as well as corporate executives and professionals who seek a more profound analysis and understanding of the underlying factors and mechanisms of outsourcing.
Resumo:
The objective of this article is to demonstrate the feasibility of on-demand creation of cloud-based elastic mobile core networks, along with their lifecycle management. For this purpose the article describes the key elements to realize the architectural vision of EPC as a Service, an implementation option of the Evolved Packet Core, as specified by 3GPP, which can be deployed in cloud environments. To meet several challenging requirements associated with the implementation of EPC over a cloud infrastructure and providing it “as a Service,” this article presents a number of different options, each with different characteristics, advantages, and disadvantages. A thorough analysis comparing the different implementation options is also presented.
Resumo:
Software development teams increasingly adopt platform-as-a-service (PaaS), i.e., cloud services that make software development infrastructure available over the internet. Yet, empirical evidence of whether and how software development work changes with the use of PaaS is difficult to find. We performed a grounded-theory study to explore the affordances of PaaS for software development teams. We find that PaaS enables software development teams to enforce uniformity, to exploit knowledge embedded in technology, to enhance agility, and to enrich jobs. These affordances do not arise in a vacuum. Their emergence is closely interwoven with changes in methodologies, roles, and norms that give rise to self-organizing, loosely coupled teams. Our study provides rich descriptions of PaaS-based software development and an emerging theory of affordances of PaaS for software development teams.
Resumo:
Location prediction has attracted a significant amount of research effort. Being able to predict users’ movement benefits a wide range of communication systems, including location-based service/applications, mobile access control, mobile QoS provision, and resource management for mobile computation and storage management. In this demo, we present MOBaaS, which is a cloudified Mobility and Bandwidth prediction services that can be instantiated, deployed, and disposed on-demand. Mobility prediction of MOBaaS provides location predictions of a single/group user equipments (UEs) in a future moment. This information can be used for self-adaptation procedures and optimal network function configuration during run-time operations. We demonstrate an example of real-time mobility prediction service deployment running on OpenStack platform, and the potential benefits it bring to other invoking services.
Resumo:
Advancements in cloud computing have enabled the proliferation of distributed applications, which require management and control of multiple services. However, without an efficient mechanism for scaling services in response to changing workload conditions, such as number of connected users, application performance might suffer, leading to violations of Service Level Agreements (SLA) and possible inefficient use of hardware resources. Combining dynamic application requirements with the increased use of virtualised computing resources creates a challenging resource Management context for application and cloud-infrastructure owners. In such complex environments, business entities use SLAs as a means for specifying quantitative and qualitative requirements of services. There are several challenges in running distributed enterprise applications in cloud environments, ranging from the instantiation of service VMs in the correct order using an adequate quantity of computing resources, to adapting the number of running services in response to varying external loads, such as number of users. The application owner is interested in finding the optimum amount of computing and network resources to use for ensuring that the performance requirements of all her/his applications are met. She/he is also interested in appropriately scaling the distributed services so that application performance guarantees are maintained even under dynamic workload conditions. Similarly, the infrastructure Providers are interested in optimally provisioning the virtual resources onto the available physical infrastructure so that her/his operational costs are minimized, while maximizing the performance of tenants’ applications. Motivated by the complexities associated with the management and scaling of distributed applications, while satisfying multiple objectives (related to both consumers and providers of cloud resources), this thesis proposes a cloud resource management platform able to dynamically provision and coordinate the various lifecycle actions on both virtual and physical cloud resources using semantically enriched SLAs. The system focuses on dynamic sizing (scaling) of virtual infrastructures composed of virtual machines (VM) bounded application services. We describe several algorithms for adapting the number of VMs allocated to the distributed application in response to changing workload conditions, based on SLA-defined performance guarantees. We also present a framework for dynamic composition of scaling rules for distributed service, which used benchmark-generated application Monitoring traces. We show how these scaling rules can be combined and included into semantic SLAs for controlling allocation of services. We also provide a detailed description of the multi-objective infrastructure resource allocation problem and various approaches to satisfying this problem. We present a resource management system based on a genetic algorithm, which performs allocation of virtual resources, while considering the optimization of multiple criteria. We prove that our approach significantly outperforms reactive VM-scaling algorithms as well as heuristic-based VM-allocation approaches.
Resumo:
The ability to determine what activity of daily living a person performs is of interest in many application domains. It is possible to determine the physical and cognitive capabilities of the elderly by inferring what activities they perform in their houses. Our primary aim was to establish a proof of concept that a wireless sensor system can monitor and record physical activity and these data can be modeled to predict activities of daily living. The secondary aim was to determine the optimal placement of the sensor boxes for detecting activities in a room. A wireless sensor system was set up in a laboratory kitchen. The ten healthy participants were requested to make tea following a defined sequence of tasks. Data were collected from the eight wireless sensor boxes placed in specific places in the test kitchen and analyzed to detect the sequences of tasks performed by the participants. These sequence of tasks were trained and tested using the Markov Model. Data analysis focused on the reliability of the system and the integrity of the collected data. The sequence of tasks were successfully recognized for all subjects and the averaged data pattern of tasks sequences between the subjects had a high correlation. Analysis of the data collected indicates that sensors placed in different locations are capable of recognizing activities, with the movement detection sensor contributing the most to detection of tasks. The central top of the room with no obstruction of view was considered to be the best location to record data for activity detection. Wireless sensor systems show much promise as easily deployable to monitor and recognize activities of daily living.
Resumo:
Geographic health planning analyses, such as service area calculations, are hampered by a lack of patient-specific geographic data. Using the limited patient address information in patient management systems, planners analyze patient origin based on home address. But activity space research done sparingly in public health and extensively in non-health related arenas uses multiple addresses per person when analyzing accessibility. Also, health care access research has shown that there are many non-geographic factors that influence choice of provider. Most planning methods, however, overlook non-geographic factors influencing choice of provider, and the limited data mean the analyses can only be related to home address. This research attempted to determine to what extent geography plays a part in patient choice of provider and to determine if activity space data can be used to calculate service areas for primary care providers. ^ During Spring 2008, a convenience sample of 384 patients of a locally-funded Community Health Center in Houston, Texas, completed a survey that asked about what factors are important when he or she selects a health care provider. A subset of this group (336) also completed an activity space log that captured location and time data on the places where the patient regularly goes. ^ Survey results indicate that for this patient population, geography plays a role in their choice of health care provider, but it is not the most important reason for choosing a provider. Other factors for choosing a health care provider such as the provider offering "free or low cost visits", meeting "all of the patient's health care needs", and seeing "the patient quickly" were all ranked higher than geographic reasons. ^ Analysis of the patient activity locations shows that activity spaces can be used to create service areas for a single primary care provider. Weighted activity-space-based service areas have the potential to include more patients in the service area since more than one location per patient is used. Further analysis of the logs shows that a reduced set of locations by time and type could be used for this methodology, facilitating ongoing data collection for activity-space-based planning efforts. ^
Resumo:
The three articles that comprise this dissertation describe how small area estimation and geographic information systems (GIS) technologies can be integrated to provide useful information about the number of uninsured and where they are located. Comprehensive data about the numbers and characteristics of the uninsured are typically only available from surveys. Utilization and administrative data are poor proxies from which to develop this information. Those who cannot access services are unlikely to be fully captured, either by health care provider utilization data or by state and local administrative data. In the absence of direct measures, a well-developed estimation of the local uninsured count or rate can prove valuable when assessing the unmet health service needs of this population. However, the fact that these are “estimates” increases the chances that results will be rejected or, at best, treated with suspicion. The visual impact and spatial analysis capabilities afforded by geographic information systems (GIS) technology can strengthen the likelihood of acceptance of area estimates by those most likely to benefit from the information, including health planners and policy makers. ^ The first article describes how uninsured estimates are currently being performed in the Houston metropolitan region. It details the synthetic model used to calculate numbers and percentages of uninsured, and how the resulting estimates are integrated into a GIS. The second article compares the estimation method of the first article with one currently used by the Texas State Data Center to estimate numbers of uninsured for all Texas counties. Estimates are developed for census tracts in Harris County, using both models with the same data sets. The results are statistically compared. The third article describes a new, revised synthetic method that is being tested to provide uninsured estimates at sub-county levels for eight counties in the Houston metropolitan area. It is being designed to replicate the same categorical results provided by a current U.S. Census Bureau estimation method. The estimates calculated by this revised model are compared to the most recent U.S. Census Bureau estimates, using the same areas and population categories. ^
Resumo:
Statistical methods are developed which assess survival data for two attributes; (1) prolongation of life, (2) quality of life. Health state transition probabilities correspond to prolongation of life and are modeled as a discrete-time semi-Markov process. Imbedded within the sojourn time of a particular health state are the quality of life transitions. They reflect events which differentiate perceptions of pain and suffering over a fixed time period. Quality of life transition probabilities are derived from the assumptions of a simple Markov process. These probabilities depend on the health state currently occupied and the next health state to which a transition is made. Utilizing the two forms of attributes the model has the capability to estimate the distribution of expected quality adjusted life years (in addition to the distribution of expected survival times). The expected quality of life can also be estimated within the health state sojourn time making more flexible the assessment of utility preferences. The methods are demonstrated on a subset of follow-up data from the Beta Blocker Heart Attack Trial (BHAT). This model contains the structure necessary to make inferences when assessing a general survival problem with a two dimensional outcome. ^
Resumo:
The purpose of this study was twofold: (1) To describe the relation of the intensity of DSS implementation to financial performance as an empirical exploration of improved performance at the organizational level. (2) To describe the relation of the intensity of DSS implementation to the type of organizational decision culture. A multiple case study design was utilized to compare three groups of paired cases. A pattern matching strategy was applied in this study. Four predictions were specified and compared to the empirical data. A progressively upward trend in the scores was predicted for the following theoretical relationships. (1) The greater the number of DSSs, the higher the sophistication index. (2) The greater the number of DSSs, the higher the financial ratios. (3) The greater the number of DSSs, the higher the culture score. (4) The higher the culture score, the higher the financial ratios. The data did not support any of the predicted trends except the relation between the number of DSSs and the financial ratios. The Income/Revenue ratio indicates the efficiency of a company's operations. One would expect that this ratio would be most affected by the operational and financial decision support systems. The majority of the systems measured in the study supported decisions tangential to the patient service areas. The evidence suggested that the type and number of decision support systems affects the bottom line. ^
Resumo:
This paper analyzes some recent theoretical and practical evidence in terms of economic results of different exchange rate systems. It begins with a historical review and a summary of fixed versus flexible exchange rate systems. Then it compares the experiences of recent currency unions, mostly unilateral, and their relative economic performance during the past currency crises in Latin America, East Asia and Eastern Europe. A set of issues is discussed in order to weigh the overall costs and benefits for several economies. These issues include exchange rates, GDP performance, inflation rates and foreign reserves. The case of Argentina is also considered separately, comparing mostly seigniorage costs and interest-rate savings. The benefits and costs of the producers (central banks/governments) and the consumers (citizens) of money are discussed separately. Free banking is also considered in a fast-changing world where there will probably be fewer but better currencies. Not just the euro is a reality now, but maybe the "amero" and the "worldo" or the "mondo" very soon.