956 resultados para Field-effect transistors
Resumo:
The thesis investigated progression of the central 10° visual field with structural changes at the macula in a cross-section of patients with varying degrees of agerelated macular degeneration (AMD). The relationships between structure and function were investigated for both standard and short-wavelength automated perimetry (SWAP). Factors known to influence the measure of visual field progression were considered, including the accuracy of the refractive correction on SWAP thresholds and the learning effect. Techniques of assessing the structure to function relationships between fundus images and the visual field were developed with computer programming and evaluated for repeatability. Drusen quantification of fundus photographs and retro-mode scanning laser ophthalmoscopic images was performed. Visual field progression was related to structural changes derived from both manual and automated methods. Principal Findings: • Visual field sensitivity declined with advancing stage of AMD. SWAP showed greater sensitivity to progressive changes than standard perimetry. • Defects were confined to the central 5°. SWAP defects occurred at similar locations but were deeper and wider than corresponding standard perimetry defects. • The central field became less uniform as severity of AMD increased. SWAP visual field indices of focal loss were of more importance when detecting early change in AMD, than indices of diffuse loss. • The decline in visual field sensitivity over stage of severity of AMD was not uniform, whereas a linear relationship was found between the automated measure of drusen area and visual field parameters. • Perimetry exhibited a stronger relationship with drusen area than other measures of visual function. • Overcorrection of the refraction for the working distance in SWAP should be avoided in subjects with insufficient accommodative facility. • The perimetric learning effect in the 10° field did not differ significantly between normal subjects and AMD patients. • Subretinal deposits appeared more numerous in retro-mode imaging than in fundus photography.
Resumo:
Consumers' tendency to choose the option in the center of an array and the process underlying this effect is explored. Findings from two eye-tracking studies suggest that brands in the horizontal center receive more visual attention. They are more likely to be chosen. Investigation of the attention process revealed an initial central fixation bias, a tendency to look first at the central option, and a central gaze cascade effect, progressively increasing attention focused on the central option right prior to decision. Only the central gaze cascade effect was related to choice. An offline study with tangible products demonstrated that the centrally located item within a product category is chosen more often, even when it is not placed in the center of the visual field. Despite widespread use, memory-based attention measures were not correlated with eye-tracking measures. They did not capture visual attention and were not related to choice. © 2012 by JOURNAL OF CONSUMER RESEARCH, Inc.
Resumo:
The authors use social control theory to develop a conceptual model that addresses the effectiveness of regulatory agencies’ (e.g., Food and Drug Administration, Occupational Safety and Health Administration) field-level efforts to obtain conformance with product safety laws. Central to the model are the control processes agencies use when monitoring organizations and enforcing the safety rules. These approaches can be labeled formal control (e.g., rigid enforcement) and informal control (e.g., social instruction). The theoretical framework identifies an important antecedent of control and the relative effectiveness of control’s alternative forms in gaining compliance and reducing opportunism. Furthermore, the model predicts that the regulated firms’ level of agreement with the safety rules moderates the relationships between control and firm responses. A local health department’s administration of state food safety regulations provides the empirical context for testing the hypotheses. The results from a survey of 173 restaurants largely support the proposed model. The study findings inform a discussion of effective methods of administering product safety laws. The authors use social control theory to develop a conceptual model that addresses the effectiveness of regulatory agencies’ (e.g., Food and Drug Administration, Occupational Safety and Health Administration) field-level efforts to obtain conformance with product safety laws. Central to the model are the control processes agencies use when monitoring organizations and enforcing the safety rules. These approaches can be labeled formal control (e.g., rigid enforcement) and informal control (e.g., social instruction). The theoretical framework identifies an important antecedent of control and the relative effectiveness of control’s alternative forms in gaining compliance and reducing opportunism. Furthermore, the model predicts that the regulated firms’ level of agreement with the safety rules moderates the relationships between control and firm responses. A local health department’s administration of state food safety regulations provides the empirical context for testing the hypotheses. The results from a survey of 173 restaurants largely support the proposed model. The study findings inform a discussion of effective methods of administering product safety laws.
Resumo:
In induction machines the tooth frequency losses due to permeance variation constitute a signif'icant, portion of the total loss. In order to predict and estimate these losses it, is essential to obtain a clear understanding of the no-load distribution of the air gap magnetic field and the magnitude of flux pulsation in both stator and rotor teeth. The existing theories and methods by which the air gap permeance variation in a doubly slotted structure is calculated are either empirical or restricted. The main objective of this thesis is to obtain a detailed analysis of the no-load air gap magnetic field distribution and the effect of air gap geometry on the magnitude and waveform of the tooth flux pulsation. In this thesis a detaiiled theoretical and experimental analysis of flux distribution not only leads to a better understanding of the distribution of no-load losses but also provides theoretical analysis for calculating the losses with greater accuracy
Resumo:
This thesis presents an examination of the factors which influence the performance of eddy-current machines and the way in which they affect optimality of those machines. After a brief introduction to the types of eddy-current machine considered, the applications to which these machines are put are examined. A list of parameters by which to assess their performance is obtained by considering the machine as part of a system. in this way an idea of what constitutes an optimal machine is obtained. The third chapter then identifies the factors which affects the performance and makes a quantitative evaluation of the effect. Here the various alternative configurations and components are compared with regard to their influence on the mechanical, electromagnetic, and thermal performance criteria of the machine. Chapter four contains a brief review of the methods of controlling eddy-current machines by electronic methods using thyristors or transistors as the final control element. Where necessary, the results of previous workers in the field of electrical machines have been extended or adapted to increase the usefulness of this thesis.
Resumo:
We have investigated the effect of ageing on the visual system using the relatively new technique of magentoencephalography (MEG). This technique measures the magnetic signals produced by the visual system using a SQUID magnetometer. The magnetic visual evoked field (VEF) was measured over the occipital cortex to pattern and flash stimuli in 86 normal subjects aged 15 - 86 years. Factors that influenced subject defocussing or defixating the stimulus or selective attention were controlled as far as possible. The latency of the major positive component to the pattern reversal stimulus (P100M) increased with age particularly after the age of 55 years while the amplitude of the P100M decreased over the life span. The latency of the major flash component (P2M) increased much more slowly with age, while its amplitude decreased in only a proportion of elderly subjects. Changes in the P100M with age may reflect senile changes in the eye and optic nerve, e.g. senile miosis or degenerative changes in the retina. The P2M may be more susceptible to senile changes in the retina. The data suggest that the spatial frequency channels deteriorate more rapidly with age than the luminance channels and that MEG may be an effective method of studying ageing in the visual system.
Resumo:
Using the so-called ac field technique, we investigate experimentally the influence of optical beam coupling on the generation of subharmonic gratings in a photorefractive sillenite crystal. By the use of two different recording configurations, we are able to distinguish between effects caused by material nonlinearities and effects caused by optical beam coupling.
Resumo:
Using the so-called ac field technique, we investigate experimentally the influence of optical beam coupling on the generation of subharmonic gratings in a photorefractive sillenite crystal. By the use of two different recording configurations, we are able to distinguish between effects caused by material nonlinearities and effects caused by optical beam coupling.
Resumo:
A procedure has been developed which measures the settling velocity distribution of particles within a complete sewage sample. The development of the test method included observations of particle and liquid interaction using both synthetic media and sewage. Comparison studies with two other currently used settling velocity test procedures was undertaken. The method is suitable for use with either DWF or storm sewage. Information relating to the catchment characteristics of 35 No. wastewater treatment works was collected from the privatised water companies in England and Wales. 29 No. of these sites were used in an experimental programme to determine the settling velocity grading of 33 No. sewage samples. The collected data were analysed in an attempt to relate the settling velocity distribution to the characteristics of the contributing catchment. Statistical analysis of the catchment data and the measured settling velocity distributions was undertaken. A curve fitting exercise using an S-shaped curve which had the same physical characteristics as the settling velocity distributions was performed. None of these analyses found evidence that the settling velocity distribution of sewage had a significant relationship with the chosen catchment characteristics. The regression equations produced from the statistical analysis cannot be used to assist in the design of separation devices. However, a grading curve envelope was produced, the limits of which were clearly defined for the measured data set. There was no evidence of a relationship between settling velocity grading and the characteristics of the contributing catchment, particularly the catchment area. The present empirical approach to settling tank design cannot be improved upon at present by considering the variation in catchment parameters. This study has provided a basis for future research into the settling velocity measurement and should be of benefit to future workers within this field.
Resumo:
Previous work has indicated the presence of collapsing and structured soils in the surface layers underlying Sana's, the capital of Yemen Republic. This study set out initially to define and, ultimately, to alleviate the problem by investigating the deformation behaviour of these soils through both field and laboratory programmes. The field programme was carried out in Sana'a while the laboratory work consisted of two parts, an initial phase at Sana's University carried out in parallel with the field programme on natural and treated soils and the major phase at Aston University carried out on natural, destructured and selected treated soils. The initial phase of the laboratory programme included classification, permeability, and single (collapsing) and double oedometer tests while the major phase, at Aston, was extended to also include extensive single and double oedometer tests, Scanning Electron Microscopy and Energy Dispersive Spectrum analysis. The mechanical tests were carried out on natural and destructed samples at both the in situ and soaked moisture conditions. The engineering characteristics of the natural intact, field-treated and laboratory destructured soils are reported, including their collapsing potentials which show them to be weakly bonded with nil to severe collapsing susceptibility. Flooding had no beneficial effect, with limited to moderate improvement being achieved by preloading and roller compaction, while major benefits were achieved from deep compaction. From these results a comparison between the soil response to the different treatments and general field remarks were presented. Laboratory destructuring reduced the stiffness of the soils while their compressibility was increasing. Their collapsing and destructuring mechanisms have been examined by studying the changes in structure accompanying these phenomena. Based on the test results for the intact and the laboratory destructured soils, a simplified framework has been developed to represent the collapsing and deformation behaviour at both the partially saturated and soaked states, and comments are given on its general applicability and limitations. It has been used to evaluate all the locations subjected to field treatment. It provided satisfactory results for the deformation behaviour of the soils destructed by field treatment. Finally attention is drawn to the design considerations together with the recommendations for the selection of potential improvement techniques to be used for foundation construction on the particular soils of the Sana's region.
Resumo:
The study developed statistical techniques to evaluate visual field progression for use with the Humphrey Field Analyzer (HFA). The long-term fluctuation (LF) was evaluated in stable glaucoma. The magnitude of both LF components showed little relationship with MD, CPSD and SF. An algorithm was proposed for determining the clinical necessity for a confirmatory follow-up examination. The between-examination variability was determined for the HFA Standard and FASTPAC algorithms in glaucoma. FASTPAC exhibited greater between-examination variability than the Standard algorithm across the range of sensitivities and with increasing eccentricity. The difference in variability between the algorithms had minimal clinical significance. The effect of repositioning the baseline in the Glaucoma Change Probability Analysis (GCPA) was evaluated. The global baseline of the GCPA limited the detection of progressive change at a single stimulus location. A new technique, pointwise univariate linear regressions (ULR), of absolute sensitivity and, of pattern deviation, against time to follow-up was developed. In each case, pointwise ULR was more sensitive to localised progressive changes in sensitivity than ULR of MD, alone. Small changes in sensitivity were more readily determined by the pointwise ULR than by the GCPA. A comparison between the outcome of pointwise ULR for all fields and for the last six fields manifested linear and curvilinear declines in the absolute sensitivity and the pattern deviation. A method for delineating progressive loss in glaucoma, based upon the error in the forecasted sensitivity of a multivariate model, was developed. Multivariate forecasting exhibited little agreement with GCPA in glaucoma but showed promise for monitoring visual field progression in OHT patients. The recovery of sensitivity in optic neuritis over time was modelled with a Cumulative Gaussian function. The rate and level of recovery was greater in the peripheral than the central field. Probability models to forecast the field of recovery were proposed.
Resumo:
This study investigated the detrimental effect of central field loss (CFL) on reading ability and general visual function. The aim was to improve the understanding of reading with eccentric retina in order that reading performances of individuals with CFL may be maximised. To improve visual ability of individuals with CFL, it is important to be able to accurately measure the outcome of any intervention. Various methods for determining visual function were therefore compared with perceived visual performance (as measured with a quality of life questionnaire) before and after surgical removal of choroidal new vessels (CNV) in macular disease patients. The results highlight the importance of low contrast measures (low contrast visual acuity and contrast sensitivity) when investigating perceived reading performance. Reading speed was found to be important for reflecting changes in general visual quality of life. Potential causes for reduced peripheral reading ability were investigated using both normally sighted and CFL subjects. For normally sighted subjects reading eccentrically with rapid serial visual presentation (RSVP) text, the inferior visual field was a better position (in terms of reading speed) for the presentation of the text. The size of the visual span was found to reduce with increasing eccentricity of fixation, providing a potential reason for reduced peripheral reading performances. The investigation of the ability to use context when reading with peripheral retina resulted in conflicting results. Studies in this thesis found both a reduction and no reduction in the ability of the peripheral retina to utilise context compared to the fovea. Individuals with long-term CFL showed no improvement in peripheral reading ability over that found for normally sighted subjects reading at the same eccentricity.
Resumo:
The study utilized the advanced technology provided by automated perimeters to investigate the hypothesis that patients with retinitis pigmentosa behave atypically over the dynamic range and to concurrently determine the influence of extraneous factors on the format of the normal perimetric sensitivity profile. The perimetric processing of some patients with retinitis pigmentosa was considered to be abnormal in either the temporal and/or the spatial domain. The standard size III stimulus saturated the central regions and was thus ineffective in detecting early depressions in sensitivity in these areas. When stimulus size was scaled in inverse proportion to the square root of ganglion cell receptive field density (M-scaled), isosensitive profiles did not result, although cortical representation was theoretically equivalent across the visual field. It was conjectured that this was due to variations in the ganglion cell characteristics with increasing peripheral angle, most notably spatial summation. It was concluded that the development of perimetric routines incorporating stimulus sizes adjusted in proportion to the coverage factor of retinal ganglion cells would enhance the diagnostic capacity of perimetry. Good general and local correspondence was found between perimetric sensitivity and the available retinal cell counts. Intraocular light scatter arising both from simulations and media opacities depressed perimetric sensitivity. Attenuation was greater centrally for the smaller LED stimuli, whereas the reverse was true for the larger projected stimuli. Prior perimetric experience and pupil size also demonstrated eccentricity-dependent effect on sensitivity. Practice improved perimetric sensitivity for projected stimuli at eccentricities greater than or equal to 30o; particularly in the superior region. Increase in pupil size for LED stimuli enhanced sensitivity at eccentricities greater than 10o. Conversely, microfluctuation in the accommodative response during perimetric examination and the correction of peripheral refractive error had no significant influence on perimetric sensitivity.
Resumo:
The topographical distribution of the pattern reversal Visual Evoked Response (VER) was recorded from a localised montage of 20 electrodes over the visual cortex. The response was recorded after stimulation with a black and white checkerboard stimulus. The effect of field location on the major components was investigated in 11 subjects (age range (23-55). The major components of the half field response were; a negative around 75ms (N75) followed by a positivity around 80ms (P80), then a positivity around 100ms (P100) followed by another positivity at around 120ms (P120) and a negativity at approximately 145ms (N145). No effect of field size could be demonstrated on either the amplitude or latency of the late negativity, N145. No significant effect of field size or location was shown on the latency of the P100 response. A delay previously shown in the upper half field response was therefore not substantiated. In contrast the amplitude of the major positivity, P100 was significantly affected by the field size and location. The amplitude of both P100 and N145 were significantly reduced following upper field stimulation when compared with the lower field response. No significant amplitude difference between the upper and lower field responses was demonstrated using electroretinography, the amplitude may therefore be reduced as a result of the ventral position of the upper field representation on the visual cortex. The lateral half field VEP was compared with the distribution of the visual evoked magnetic response (VEMR). The distribution of the VEMR supported the proposal that the paradoxical lateralisation of the VEP half field response is the result of the source being directed ipsilaterally. The morphology of the VEP following octant and double octant stimulation suggests that the response is generated in the striate cortex, with a reversal in response distribution following stimulation of the upper vertical and horizontal meridia.
Resumo:
The study investigated the potential applications and the limitations of non-standard techniques of visual field investigation utilizing automated perimetry. Normal subjects exhibited a greater sensitivity to kinetic stimuli than to static stimuli of identical size. The magnitude of physiological SKD was found to be largely independent of age, stimulus size, meridian and eccentricity. The absence of a dependency on stimulus size indicated that successive lateral spatial summation could not totally account for the underlying mechanism of physiological SKD. The visual field indices MD and LV exhibited a progressive deterioration during the time course of a conventional central visual field examination both for normal subjects and for ocular hypertensive patients. The fatigue effect was more pronounced in the latter stages and for the second eye tested. The confidence limits for the definition of abnormality should reflect the greater effect of fatigue on the second eye. A 330 cdm-2 yellow background was employed for blue-on-yellow perimetry. Instrument measurement range was preserved by positioning a concave mirror behind the stimulus bulb to increase the light output by 60% . The mean magnitude of SWS pathway isolation was approximately 1.4 log units relative to a 460nm stimulus filter. The absorption spectra of the ocular media exhibited an exponential increase with increase in age, whilst that of the macular pigment showed no systematic trend. The magnitude of ocular media absorption was demonstrated to reduce with increase in wavelength. Ocular media absorption was significantly greater in diabetic patients than in normal subjects. Five diabetic patients with either normal or borderline achromatic sensitivity exhibited an abnormal blue-on-yellow sensitivity; two of these patients showed no signs of retinopathy. A greater vulnerability of the SWS pathway to the diabetic disease process was hypothesized.