948 resultados para Field data analyser
Resumo:
Satellite remote sensing is being effectively used in monitoring the ocean surface and its overlying atmosphere. Technical growth in the field of satellite sensors has made satellite measurement an inevitable part of oceanographic and atmospheric research. Among the ocean observing sensors, ocean colour sensors make use of visible band of electromagnetic spectrum (shorter wavelength). The use of shorter wavelength ensures fine spatial resolution of these parameters to depict oceanographic and atmospheric characteristics of any region having significant spaio-temporal variability. Off the southwest coast of India is such an area showing very significant spatio-temporal oceanographic and atmospheric variability due to the seasonally reversing surface winds and currents. Consequently, the region is enriched with features like upwelling, sinking, eddies, fronts, etc. Among them, upwelling brings nutrient-rich waters from subsurface layers to surface layers. During this process primary production enhances, which is measured in ocean colour sensors as high values of Chl a. Vertical attenuation depth of incident solar radiation (Kd) and Aerosol Optical Depth (AOD) are another two parameters provided by ocean colour sensors. Kd is also susceptible to undergo significant seasonal variability due to the changes in the content of Chl a in the water column. Moreover, Kd is affected by sediment transport in the upper layers as the region experiences land drainage resulting from copious rainfall. The wide range of variability of wind speed and direction may also influence the aerosol source / transport and consequently AOD. The present doctoral thesis concentrates on the utility of Chl a, Kd and AODprovided by satellite ocean colour sensors to understand oceanographic and atmospheric variability off the southwest coast of India. The thesis is divided into six Chapters with further subdivisions
Resumo:
The evolution of wireless sensor network technology has enabled us to develop advanced systems for real time monitoring. In the present scenario wireless sensor networks are increasingly being used for precision agriculture. The advantages of using wireless sensor networks in agriculture are distributed data collection and monitoring, monitor and control of climate, irrigation and nutrient supply. Hence decreasing the cost of production and increasing the efficiency of production.This paper describes the application of wireless sensor network for crop monitoring in the paddy fields of kuttand, a region of Kerala, the southern state of India.
Resumo:
For millennia oasis agriculture has been the backbone of rural livelihood in the desertic Sultanate of Oman. However, little is known about the functioning of these oasis systems, in particular with respect to the C turnover. The objective was to determine the effects of crop, i.e. alfalfa, wheat and bare fallow on the CO2 evolution rate during an irrigation cycle in relation to changes in soil water content and soil temperature. The gravimetric soil water content decreased from initially 24% to approximately 16% within 7 days after irrigation. The mean CO2 evolution rates increased significantly in the order fallow (27.4 mg C m^−2 h^−1) < wheat (45.5 mg C m^−2 h^−1) < alfalfa (97.5 mg C m^−2 h^−1). It can be calculated from these data that the CO2 evolution rate of the alfalfa root system was nearly four times higher than the corresponding rate in the wheat root system. The decline in CO2 evolution rate, especially during the first 4 days after irrigation, was significantly related to the decline in the gravimetric water content, with r = 0.70. CO2 evolution rate and soil temperature at 5 cm depth were negatively correlated (r = -0.56,n = 261) due to increasing soil temperature with decreasing gravimetric water content.
Resumo:
Little is known about nutrient fluxes as a criterion to assess the sustainability of traditional irrigation agriculture in eastern Arabia. In this study GIS-based field research on terraced cropland and groves of date palm (Phoenix dactylifera L.) was conducted over 2 years in two mountain oases of northern Oman to determine their role as hypothesized sinks for nitrogen (N), phosphorus (P) and potassium (K). At Balad Seet 55% of the 385 fields received annual inputs of 100–500 kg N ha^-1 and 26% received 500–1400 kg N ha^-1. No N was applied to 19% of the fields which were under fallow. Phosphorus was applied annually at 1–90 kg ha^-1 on 46% of the fields, whereas 27% received 90–210 kg ha^-1. No K was applied to 27% of the fields, 32% received 1–300 kg K ha^-1, and the remaining fields received up to 1400 kg ha^-1. At Maqta N-inputs were 61–277 kg ha^-1 in palm groves and 112–225 kg ha^-1 in wheat (Triticum spp.) fields, respective P inputs were 9–40 and 14–29 kg ha^-1, and K inputs were 98–421 and 113–227 kg ha^-1. For cropland, partial oasis balances (comprising inputs of manure, mineral fertilizers, N2-fixation and irrigation water, and outputs of harvested products) were similar for both oases, with per hectare surpluses of 131 kg N, 37 kg P, and 84 kg K at Balad Seet and of 136 kg N, 16 kg P and 66 kg K at Maqta. This was despite the fact that N2-fixation by alfalfa (Medicago sativa L.), estimated at up to 480 kg ha^-1 yr^-1 with an average total dry matter of 22 t ha^-1, contributed to the cropland N-balance only at the former site. Respective palm grove surpluses, in contrast were with 303 kg N, 38 kg P, and 173 kg K ha^-1 much higher at Balad Seet than with 84 kg N, 14 kg P, and 91 kg K ha^-1 at Maqta. The data show that both oases presently are large sinks for nutrients. Potential gaseous and leaching losses could at least partly be controlled by a decrease in nutrient input intensity and careful incorporation of manure.
Resumo:
Summary: Productivity, botanical composition and forage quality of legume-grass swards are important factors for successful arable farming in both organic and conventional farming systems. As these attributes can vary considerably within a field, a non-destructive method of detection while doing other tasks would facilitate a more targeted management of crops, forage and nutrients in the soil-plant-animal system. This study was undertaken to explore the potential of field spectral measurements for a non destructive prediction of dry matter (DM) yield, legume proportion in the sward, metabolizable energy (ME), ash content, crude protein (CP) and acid detergent fiber (ADF) of legume-grass mixtures. Two experiments were conducted in a greenhouse under controlled conditions which allowed collecting spectral measurements which were free from interferences such as wind, passing clouds and changing angles of solar irradiation. In a second step this initial investigation was evaluated in the field by a two year experiment with the same legume-grass swards. Several techniques for analysis of the hyperspectral data set were examined in this study: four vegetation indices (VIs): simple ratio (SR), normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and red edge position (REP), two-waveband reflectance ratios, modified partial least squares (MPLS) regression and stepwise multiple linear regression (SMLR). The results showed the potential of field spectroscopy and proved its usefulness for the prediction of DM yield, ash content and CP across a wide range of legume proportion and growth stage. In all investigations prediction accuracy of DM yield, ash content and CP could be improved by legume-specific calibrations which included mixtures and pure swards of perennial ryegrass and of the respective legume species. The comparison between the greenhouse and the field experiments showed that the interaction between spectral reflectance and weather conditions as well as incidence angle of light interfered with an accurate determination of DM yield. Further research is hence needed to improve the validity of spectral measurements in the field. Furthermore, the developed models should be tested on varying sites and vegetation periods to enhance the robustness and portability of the models to other environmental conditions.
Resumo:
Lasers play an important role for medical, sensoric and data storage devices. This thesis is focused on design, technology development, fabrication and characterization of hybrid ultraviolet Vertical-Cavity Surface-Emitting Lasers (UV VCSEL) with organic laser-active material and inorganic distributed Bragg reflectors (DBR). Multilayer structures with different layer thicknesses, refractive indices and absorption coefficients of the inorganic materials were studied using theoretical model calculations. During the simulations the structure parameters such as materials and thicknesses have been varied. This procedure was repeated several times during the design optimization process including also the feedback from technology and characterization. Two types of VCSEL devices were investigated. The first is an index coupled structure consisting of bottom and top DBR dielectric mirrors. In the space in between them is the cavity, which includes active region and defines the spectral gain profile. In this configuration the maximum electrical field is concentrated in the cavity and can destroy the chemical structure of the active material. The second type of laser is a so called complex coupled VCSEL. In this structure the active material is placed not only in the cavity but also in parts of the DBR structure. The simulations show that such a distribution of the active material reduces the required pumping power for reaching lasing threshold. High efficiency is achieved by substituting the dielectric material with high refractive index for the periods closer to the cavity. The inorganic materials for the DBR mirrors have been deposited by Plasma- Enhanced Chemical Vapor Deposition (PECVD) and Dual Ion Beam Sputtering (DIBS) machines. Extended optimizations of the technological processes have been performed. All the processes are carried out in a clean room Class 1 and Class 10000. The optical properties and the thicknesses of the layers are measured in-situ by spectroscopic ellipsometry and spectroscopic reflectometry. The surface roughness is analyzed by atomic force microscopy (AFM) and images of the devices are taken with scanning electron microscope (SEM). The silicon dioxide (SiO2) and silicon nitride (Si3N4) layers deposited by the PECVD machine show defects of the material structure and have higher absorption in the ultra violet range compared to ion beam deposition (IBD). This results in low reflectivity of the DBR mirrors and also reduces the optical properties of the VCSEL devices. However PECVD has the advantage that the stress in the layers can be tuned and compensated, in contrast to IBD at the moment. A sputtering machine Ionsys 1000 produced by Roth&Rau company, is used for the deposition of silicon dioxide (SiO2), silicon nitride (Si3N4), aluminum oxide (Al2O3) and zirconium dioxide (ZrO2). The chamber is equipped with main (sputter) and assisted ion sources. The dielectric materials were optimized by introducing additional oxygen and nitrogen into the chamber. DBR mirrors with different material combinations were deposited. The measured optical properties of the fabricated multilayer structures show an excellent agreement with the results of theoretical model calculations. The layers deposited by puttering show high compressive stress. As an active region a novel organic material with spiro-linked molecules is used. Two different materials have been evaporated by utilizing a dye evaporation machine in the clean room of the department Makromolekulare Chemie und Molekulare Materialien (mmCmm). The Spiro-Octopus-1 organic material has a maximum emission at the wavelength λemission = 395 nm and the Spiro-Pphenal has a maximum emission at the wavelength λemission = 418 nm. Both of them have high refractive index and can be combined with low refractive index materials like silicon dioxide (SiO2). The sputtering method shows excellent optical quality of the deposited materials and high reflection of the multilayer structures. The bottom DBR mirrors for all VCSEL devices were deposited by the DIBS machine, whereas the top DBR mirror deposited either by PECVD or by combination of PECVD and DIBS. The fabricated VCSEL structures were optically pumped by nitrogen laser at wavelength λpumping = 337 nm. The emission was measured by spectrometer. A radiation of the VCSEL structure at wavelength 392 nm and 420 nm is observed.
Resumo:
Seafloor imagery is a rich source of data for the study of biological and geological processes. Among several applications, still images of the ocean floor can be used to build image composites referred to as photo-mosaics. Photo-mosaics provide a wide-area visual representation of the benthos, and enable applications as diverse as geological surveys, mapping and detection of temporal changes in the morphology of biodiversity. We present an approach for creating globally aligned photo-mosaics using 3D position estimates provided by navigation sensors available in deep water surveys. Without image registration, such navigation data does not provide enough accuracy to produce useful composite images. Results from a challenging data set of the Lucky Strike vent field at the Mid Atlantic Ridge are reported
Resumo:
Path planning and control strategies applied to autonomous mobile robots should fulfil safety rules as well as achieve final goals. Trajectory planning applications should be fast and flexible to allow real time implementations as well as environment interactions. The methodology presented uses the on robot information as the meaningful data necessary to plan a narrow passage by using a corridor based on attraction potential fields that approaches the mobile robot to the final desired configuration. It employs local and dense occupancy grid perception to avoid collisions. The key goals of this research project are computational simplicity as well as the possibility of integrating this method with other methods reported by the research community. Another important aspect of this work consist in testing the proposed method by using a mobile robot with a perception system composed of a monocular camera and odometers placed on the two wheels of the differential driven motion system. Hence, visual data are used as a local horizon of perception in which trajectories without collisions are computed by satisfying final goal approaches and safety criteria
Resumo:
Este proyecto de investigación busca usar un sistema de cómputo basado en modelación por agentes para medir la percepción de marca de una organización en una población heterogénea. Se espera proporcionar información que permita dar soluciones a una organización acerca del comportamiento de sus consumidores y la asociada percepción de marca. El propósito de este sistema es el de modelar el proceso de percepción-razonamiento-acción para simular un proceso de razonamiento como el resultado de una acumulación de percepciones que resultan en las acciones del consumidor. Este resultado definirá la aceptación de marca o el rechazo del consumidor hacia la empresa. Se realizó un proceso de recolección información acerca de una organización específica en el campo de marketing. Después de compilar y procesar la información obtenida de la empresa, el análisis de la percepción de marca es aplicado mediante procesos de simulación. Los resultados del experimento son emitidos a la organización mediante un informe basado en conclusiones y recomendaciones a nivel de marketing para mejorar la percepción de marca por parte de los consumidores.
Resumo:
Title: Data-Driven Text Generation using Neural Networks Speaker: Pavlos Vougiouklis, University of Southampton Abstract: Recent work on neural networks shows their great potential at tackling a wide variety of Natural Language Processing (NLP) tasks. This talk will focus on the Natural Language Generation (NLG) problem and, more specifically, on the extend to which neural network language models could be employed for context-sensitive and data-driven text generation. In addition, a neural network architecture for response generation in social media along with the training methods that enable it to capture contextual information and effectively participate in public conversations will be discussed. Speaker Bio: Pavlos Vougiouklis obtained his 5-year Diploma in Electrical and Computer Engineering from the Aristotle University of Thessaloniki in 2013. He was awarded an MSc degree in Software Engineering from the University of Southampton in 2014. In 2015, he joined the Web and Internet Science (WAIS) research group of the University of Southampton and he is currently working towards the acquisition of his PhD degree in the field of Neural Network Approaches for Natural Language Processing. Title: Provenance is Complicated and Boring — Is there a solution? Speaker: Darren Richardson, University of Southampton Abstract: Paper trails, auditing, and accountability — arguably not the sexiest terms in computer science. But then you discover that you've possibly been eating horse-meat, and the importance of provenance becomes almost palpable. Having accepted that we should be creating provenance-enabled systems, the challenge of then communicating that provenance to casual users is not trivial: users should not have to have a detailed working knowledge of your system, and they certainly shouldn't be expected to understand the data model. So how, then, do you give users an insight into the provenance, without having to build a bespoke system for each and every different provenance installation? Speaker Bio: Darren is a final year Computer Science PhD student. He completed his undergraduate degree in Electronic Engineering at Southampton in 2012.
Resumo:
Introducción: El programa de Fisioterapia de la Universidad del Rosario, en su responsabilidad social de generar un impacto positivo en la comunidad y en su propósito de formar profesionales, cuenta con los Programas Académicos de Campo (PAC) que se consideran una fuerte estrategia de extensión de la Universidad. Los PAC contribuyen a la adquisición de competencias para el desarrollo de procesos de acción-actuación-creación en los estudiantes para que resuelvan problemas en un espacio real de ejercicio profesional. Bajo esta perspectiva los PAC del programa de Fisioterapia muestran su comportamiento a través de la medición de indicadores de proceso y resultados propuestos desde el Programa con el fin de proveer información útil para la reorientación y permanente actualización de los contenidos programáticos en las asignaturas y en los mismos PAC. Materiales y métodos: En el siguiente artículo se presenta un análisis de los indicadores de demanda por género, régimen de Seguridad Social en Salud, procedimiento y morbilidad de los Programas Académicos de Campo Integral Pediátrico, Integral de Adultos y Rehabilitación cardíaca y/o pulmonar, con el fin de establecer las características de la población objeto de la prestación de los servicios y procurar información verificable que dé soporte para la construcción de procesos de cambio dentro de la dinámica de mejoramiento continuo que debe tener cualquier institución. Este seguimiento es útil para la toma de decisiones de planeación académica que contribuye a mejorar los procesos de planeación y a facilitar el cumplimiento de los propósitos de formación para cada práctica, y de esta manera ayuda a ser elemento de análisis para directivas, instructores y estudiantes en la orientación del proceso de gestión académico-administrativo, y a retroalimentar los procesos de planeación y programación académica. Resultados: Los resultados arrojados en el análisis de los datos de la morbilidad en los programas académicos de campo muestran el siguiente comportamiento durante los años 2004, 2005, 2006 y 2007. Conclusiones: En el PAC pediátrico la mayor incidencia es de asma con un 37,2% y la más baja incidencia es para luxación congénita de cadera y enfermedad mental de origen central con un 0,1%. El 58% de los usuarios es de género masculino, y el 81% del total pertenece al régimen contributivo. En la morbilidad del PAC de adultos la mayor incidencia es de EPOC, con un 23,2%, y la menor incidencia es de lumbalgia, con un 2,4%. La mayoría de usuarios atendidos (58%) son hombres, y el 58% de los usuarios pertenece al régimen contributivo. En el PAC de rehabilitación cardíaca y/o pulmonar la mayor incidencia fue de EPOC, con un 40%; seguido de neumonía, con 17%; y con una menor incidencia para asma, con un 2%. El 54% de los usuarios son hombres y el 91% del total pertenece al régimen subsidiado.
Resumo:
The time-of-detection method for aural avian point counts is a new method of estimating abundance, allowing for uncertain probability of detection. The method has been specifically designed to allow for variation in singing rates of birds. It involves dividing the time interval of the point count into several subintervals and recording the detection history of the subintervals when each bird sings. The method can be viewed as generating data equivalent to closed capture–recapture information. The method is different from the distance and multiple-observer methods in that it is not required that all the birds sing during the point count. As this method is new and there is some concern as to how well individual birds can be followed, we carried out a field test of the method using simulated known populations of singing birds, using a laptop computer to send signals to audio stations distributed around a point. The system mimics actual aural avian point counts, but also allows us to know the size and spatial distribution of the populations we are sampling. Fifty 8-min point counts (broken into four 2-min intervals) using eight species of birds were simulated. Singing rate of an individual bird of a species was simulated following a Markovian process (singing bouts followed by periods of silence), which we felt was more realistic than a truly random process. The main emphasis of our paper is to compare results from species singing at (high and low) homogenous rates per interval with those singing at (high and low) heterogeneous rates. Population size was estimated accurately for the species simulated, with a high homogeneous probability of singing. Populations of simulated species with lower but homogeneous singing probabilities were somewhat underestimated. Populations of species simulated with heterogeneous singing probabilities were substantially underestimated. Underestimation was caused by both the very low detection probabilities of all distant individuals and by individuals with low singing rates also having very low detection probabilities.
Resumo:
Birds are vulnerable to collisions with human-made fixed structures. Despite ongoing development and increases in infrastructure, we have few estimates of the magnitude of collision mortality. We reviewed the existing literature on avian mortality associated with transmission lines and derived an initial estimate for Canada. Estimating mortality from collisions with power lines is challenging due to the lack of studies, especially from sites within Canada, and due to uncertainty about the magnitude of detection biases. Detection of bird collisions with transmission lines varies due to habitat type, species size, and scavenging rates. In addition, birds can be crippled by the impact and subsequently die, although crippling rates are poorly known and rarely incorporated into estimates. We used existing data to derive a range of estimates of avian mortality associated with collisions with transmission lines in Canada by incorporating detection, scavenging, and crippling biases. There are 231,966 km of transmission lines across Canada, mostly in the boreal forest. Mortality estimates ranged from 1 million to 229.5 million birds per year, depending on the bias corrections applied. We consider our most realistic estimate, taking into account variation in risk across Canada, to range from 2.5 million to 25.6 million birds killed per year. Data from multiple studies across Canada and the northern U.S. indicate that the most vulnerable bird groups are (1) waterfowl, (2) grebes, (3) shorebirds, and (4) cranes, which is consistent with other studies. Populations of several groups that are vulnerable to collisions are increasing across Canada (e.g., waterfowl, raptors), which suggests that collision mortality, at current levels, is not limiting population growth. However, there may be impacts on other declining species, such as shorebirds and some species at risk, including Alberta’s Trumpeter Swans (Cygnus buccinator) and western Canada’s endangered Whooping Cranes (Grus americana). Collisions may be more common during migration, which underscores the need to understand impacts across the annual cycle. We emphasize that these estimates are preliminary, especially considering the absence of Canadian studies.
Resumo:
Convectively coupled equatorial waves are fundamental components of the interaction between the physics and dynamics of the tropical atmosphere. A new methodology, which isolates individual equatorial wave modes, has been developed and applied to observational data. The methodology assumes that the horizontal structures given by equatorial wave theory can be used to project upper- and lower-tropospheric data onto equatorial wave modes. The dynamical fields are first separated into eastward- and westward-moving components with a specified domain of frequency–zonal wavenumber. Each of the components for each field is then projected onto the different equatorial modes using the y structures of these modes given by the theory. The latitudinal scale yo of the modes is predetermined by data to fit the equatorial trapping in a suitable latitude belt y = ±Y. The extent to which the different dynamical fields are consistent with one another in their depiction of each equatorial wave structure determines the confidence in the reality of that structure. Comparison of the analyzed modes with the eastward- and westward-moving components in the convection field enables the identification of the dynamical structure and nature of convectively coupled equatorial waves. In a case study, the methodology is applied to two independent data sources, ECMWF Reanalysis and satellite-observed window brightness temperature (Tb) data for the summer of 1992. Various convectively coupled equatorial Kelvin, mixed Rossby–gravity, and Rossby waves have been detected. The results indicate a robust consistency between the two independent data sources. Different vertical structures for different wave modes and a significant Doppler shifting effect of the background zonal winds on wave structures are found and discussed. It is found that in addition to low-level convergence, anomalous fluxes induced by strong equatorial zonal winds associated with equatorial waves are important for inducing equatorial convection. There is evidence that equatorial convection associated with Rossby waves leads to a change in structure involving a horizontal structure similar to that of a Kelvin wave moving westward with it. The vertical structure may also be radically changed. The analysis method should make a very powerful diagnostic tool for investigating convectively coupled equatorial waves and the interaction of equatorial dynamics and physics in the real atmosphere. The results from application of the analysis method for a reanalysis dataset should provide a benchmark against which model studies can be compared.
Resumo:
Satellite-based rainfall monitoring is widely used for climatological studies because of its full global coverage but it is also of great importance for operational purposes especially in areas such as Africa where there is a lack of ground-based rainfall data. Satellite rainfall estimates have enormous potential benefits as input to hydrological and agricultural models because of their real time availability, low cost and full spatial coverage. One issue that needs to be addressed is the uncertainty on these estimates. This is particularly important in assessing the likely errors on the output from non-linear models (rainfall-runoff or crop yield) which make use of the rainfall estimates, aggregated over an area, as input. Correct assessment of the uncertainty on the rainfall is non-trivial as it must take account of • the difference in spatial support of the satellite information and independent data used for calibration • uncertainties on the independent calibration data • the non-Gaussian distribution of rainfall amount • the spatial intermittency of rainfall • the spatial correlation of the rainfall field This paper describes a method for estimating the uncertainty on satellite-based rainfall values taking account of these factors. The method involves firstly a stochastic calibration which completely describes the probability of rainfall occurrence and the pdf of rainfall amount for a given satellite value, and secondly the generation of ensemble of rainfall fields based on the stochastic calibration but with the correct spatial correlation structure within each ensemble member. This is achieved by the use of geostatistical sequential simulation. The ensemble generated in this way may be used to estimate uncertainty at larger spatial scales. A case study of daily rainfall monitoring in the Gambia, west Africa for the purpose of crop yield forecasting is presented to illustrate the method.