880 resultados para Fault proness


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Garnet-kyanite-staurolite gneiss in the Pangong complex, Ladakh Himalaya, contains porphyroblastic euhedral garnets, blades of kyanite and resorbed staurolite surrounded by a fine-grained muscovite-biotite matrix associated with a leucogranite layer. Sillimanite is absent. The gneiss contains two generations of garnet in cores and rims that represent two stages of metamorphism. Garnet cores are extremely rich in Mn (X(Sps) = 0.35-038) and poor in Fe (X(Alm) = 0.40-0.45), whereas rims are relatively Mn-poor (X(Sps) =0.07-0.08), and rich in Fe (X(Alm), = 0.75-0.77). We suggest that garnet cores formed during prograde metamorphism in a subduction zone followed by abrupt exhumation, during early collision of the Ladakh arc and Karakoram block. The subsequent India-Asia continental collision subducted the metamorphic rocks to a mid-crustal level, where the garnet rims overgrew the Mn-rich cores at ca. 680 degrees C and ca. 8.5 kbar. PT calculations were estimated from phase diagrams calculated using a calculated bulk chemical composition in the Mn-NCKFMASHT system for the garnet-kyanite-staurolite-bearing assemblage. Muscovites from the metamorphic rocks and associated leucogranites have consistent K-Ar ages (ca. 10 Ma), closely related to activation of the Karakoram fault in the Pangong metamorphic complex. These ages indicate the contemporaneity of the exhumation of the metamorphic rocks and the cooling of the leucogranites. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stochastic hybrid systems arise in numerous applications of systems with multiple models; e.g., air traffc management, flexible manufacturing systems, fault tolerant control systems etc. In a typical hybrid system, the state space is hybrid in the sense that some components take values in a Euclidean space, while some other components are discrete. In this paper we propose two stochastic hybrid models, both of which permit diffusion and hybrid jump. Such models are essential for studying air traffic management in a stochastic framework.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method, system, and computer program product for fault data correlation in a diagnostic system are provided. The method includes receiving the fault data including a plurality of faults collected over a period of time, and identifying a plurality of episodes within the fault data, where each episode includes a sequence of the faults. The method further includes calculating a frequency of the episodes within the fault data, calculating a correlation confidence of the faults relative to the episodes as a function of the frequency of the episodes, and outputting a report of the faults with the correlation confidence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

More than six years after the great (M-w 9.2) Sumatra-Andaman earthquake, postevent processes responsible for relaxation of the coseismic stress change remain controversial. Modeling of Andaman Islands Global Positioning System (GPS) displacements indicated early near-field motions were dominated by slip down-dip of the rupture, but various researchers ascribe elements of relaxation to dominantly poroelastic, dominantly viscoelastic, and dominantly fault slip processes, depending primarily on their measurement sampling and modeling tools used. After subtracting a pre-2004 interseismic velocity, significant transient motion during the 2008.5-2010.5 epoch confirms that postseismic relaxation processes continue in Andaman. Modeling three-component velocities as viscoelastic flow yields a weighted root-mean-square (wrms) misfit that always exceeds the wrms of the measured signal (26.3 mm/yr). The best-fitting models are those that yield negligible deformation, indicating the model parameters have no real physical meaning. GPS velocities are well fit (wrms 4.0 mm/yr) by combining a viscoelastic flow model that best fits the horizontal velocities with similar to 50 cm/yr thrust slip down-dip of the coseismic rupture. Both deep slip and flow respond to stress changes, and each can significantly change stress in the realm of the other; it therefore is reasonable to expect that both transient deep slip and viscoelastic flow will influence surface deformation long after a great earthquake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, knowledge-based approach using Support Vector Machines (SVMs) are used for estimating the coordinated zonal settings of a distance relay. The approach depends on the detailed simulation studies of apparent impedance loci as seen by distance relay during disturbance, considering various operating conditions including fault resistance. In a distance relay, the impedance loci given at the relay location is obtained from extensive transient stability studies. SVMs are used as a pattern classifier for obtaining distance relay co-ordination. The scheme utilizes the apparent impedance values observed during a fault as inputs. An improved performance with the use of SVMs, keeping the reach when faced with different fault conditions as well as system power flow changes, are illustrated with an equivalent 265 bus system of a practical Indian Western Grid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new hybrid five-level inverter topology with common-mode voltage (CMV) elimination for induction motor drive is proposed in this paper. This topology has only one dc source, and different voltage levels are generated by using this voltage source along with floating capacitors charged to asymmetrical voltage levels. The pulsewidth modulation (PWM) scheme employed in this topology balances the capacitor voltages at the required levels at any power factor and modulation index while eliminating the CMV. This inverter has good fault-tolerant capability as it can be operated in three-or two-level mode with CMV elimination, in case of any failure in the H-bridges. More voltage levels with CMV elimination can be realized from this topology but only in a limited range of modulation index and power factor. Extensive simulation is done to validate the PWM technique for CMV elimination and balancing of the capacitor voltages. The experimental verification of the proposed inverter-fed induction motor is carried out in the linear modulation and overmodulation regions. The steady-state and transient operations of the drive are verified. The dynamics of the capacitor voltage balancing is also tested. The experimental results demonstrate that the proposed topology can be considered for industrial drive applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents comparative evaluation of the distance relay characteristics for UHV and EHV transmission lines. Distance protection relay characteristics for the EHV and UHV systems are developed using Electromagnetic Transients (EMT) program. The variation of ideal trip boundaries for both the systems are presented. Unlike the conventional distance protection relay which uses a lumped parameter model, this paper uses the distributed parameter model. The effect of larger shunt susceptance on the trip boundaries is highlighted. Performance of distance relay with ideal trip boundaries for EHV and UHV lines have been tested for various fault locations and fault resistances. Electromagnetic Transients (EMT) program has been developed considering distributed parameter line model for simulating the test systems. The voltage and current phasors are computed from the signals using an improved full cycle DFT algorithm taking 20 samples per cycle. Two practical transmission systems of Indian power grid, namely 765 kV UHV transmission line and SREB 24-bus 400kV EHV system are used to test the performance of the proposed approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper illustrates the application of a new technique, based on Support Vector Clustering (SVC) for the direct identification of coherent synchronous generators in a large interconnected Multi-Machine Power Systems. The clustering is based on coherency measures, obtained from the time domain responses of the generators following system disturbances. The proposed clustering algorithm could be integrated into a wide-area measurement system that enables fast identification of coherent clusters of generators for the construction of dynamic equivalent models. An application of the proposed method is demonstrated on a practical 15 generators 72-bus system, an equivalent of Indian Southern grid in an attempt to show the effectiveness of this clustering approach. The effects of short circuit fault locations on coherency are also investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traction insulators are solid core insulators widely used for railway electrification. Constant exposure to detrimental effects of vandalism, and mechanical vibrations begets certain faults like shorting of sheds or cracks in the sheds. Due to fault in one/two sheds, stress on the remaining healthy sheds increases, owing to atmospheric pollution the stress may lead to a flashover of the insulator. Presently due to non availability of the electric stress data for the insulators, simulation study is carried out to find the potential and electric field for most widely used traction insulators in the country. The results of potential and electric field stress obtained for normal and faulty imposed insulators are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Device switching times and switching energy losses are required over a wide range of practical working conditions for successful design of insulated gate bipolar transistor (IGBT) based power converters. This paper presents a cost-effective experimental setup using a co-axial current transformer for measurement of IGBT switching characteristics and switching energy loss. Measurements are carried out on a 50A, 1200V IGBT (SKM50GB123D) for different values of gate resistance, device current and junction temperature. These measurements augment the technical data available in the device datasheet.Short circuit transients are also investigated experimentally under hard switched fault as well as fault under load conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a fast and accurate relaying technique for a long 765kv UHV transmission line based on support vector machine. For a long EHV/UHV transmission line with large distributed capacitance, a traditional distance relay which uses a lumped parameter model of the transmission line can cause malfunction of the relay. With a frequency of 1kHz, 1/4th cycle of instantaneous values of currents and voltages of all phases at the relying end are fed to Support Vector Machine(SVM). The SVM detects fault type accurately using 3 milliseconds of post-fault data and reduces the fault clearing time which improves the system stability and power transfer capability. The performance of relaying scheme has been checked with a typical 765kV Indian transmission System which is simulated using the Electromagnetic Transients Program(EMTP) developed by authors in which the distributed parameter line model is used. More than 15,000 different short circuit fault cases are simulated by varying fault location, fault impedance, fault incidence angle and fault type to train the SVM for high speed accurate relaying. Simulation studies have shown that the proposed relay provides fast and accurate protection irrespective of fault location, fault impedance, incidence time of fault and fault type. And also the proposed scheme can be used as augmentation for the existing relaying, particularly for Zone-2, Zone-3 protection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A pairwise independent network (PIN) model consists of pairwise secret keys (SKs) distributed among m terminals. The goal is to generate, through public communication among the terminals, a group SK that is information-theoretically secure from an eavesdropper. In this paper, we study the Harary graph PIN model, which has useful fault-tolerant properties. We derive the exact SK capacity for a regular Harary graph PIN model. Lower and upper bounds on the fault-tolerant SK capacity of the Harary graph PIN model are also derived.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The forces that cause deformation of western North America have been debated for decades. Recent studies, primarily based on analysis of crustal stresses in the western United States, have suggested that the deformation of the region is mainly controlled by gravitational potential energy (GPE) variations and boundary loads, with basal tractions due to mantle flow playing a relatively minor role. We address these issues by modelling the deviatoric stress field over western North America from a 3-D finite element mantle circulation model with lateral viscosity variations. Our approach takes into account the contribution from both topography and shallow lithosphere structure (GPE) as well as that from deeper mantle flow in one single model, as opposed to separate lithosphere and circulation models, as has been done so far. In addition to predicting the deviatoric stresses we also jointly fit the constraints of geoid, dynamic topography and plate motion both globally and over North America, in order to ensure that the forces that arise in our models are dynamically consistent. We examine the sensitivity of the dynamic models to different lateral viscosity variations. We find that circulation models that include upper mantle slabs yield a better fit to observed plate velocities. Our results indicate that a model of GPE variations coupled with mantle convection gives the best fit to the observational constraints. We argue that although GPE variations control a large part of the deformation of the western United States, deeper mantle tractions also play a significant role. The average deviatoric stress magnitudes in the western United States range 30-40 MPa. The cratonic region exhibits higher coupling to mantle flow than the rest of the continent. We find that a relatively strong San Andreas fault gives a better fit to the observational constraints, especially that of plate velocity in western North America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Himalayan region is one of the most active seismic regions in the world and many researchers have highlighted the possibility of great seismic event in the near future due to seismic gap. Seismic hazard analysis and microzonation of highly populated places in the region are mandatory in a regional scale. Region specific Ground Motion Predictive Equation (GMPE) is an important input in the seismic hazard analysis for macro- and micro-zonation studies. Few GMPEs developed in India are based on the recorded data and are applicable for a particular range of magnitudes and distances. This paper focuses on the development of a new GMPE for the Himalayan region considering both the recorded and simulated earthquakes of moment magnitude 5.3-8.7. The Finite Fault simulation model has been used for the ground motion simulation considering region specific seismotectonic parameters from the past earthquakes and source models. Simulated acceleration time histories and response spectra are compared with available records. In the absence of a large number of recorded data, simulations have been performed at unavailable locations by adopting Apparent Stations concept. Earthquakes recorded up to 2007 have been used for the development of new GMPE and earthquakes records after 2007 are used to validate new GMPE. Proposed GMPE matched very well with recorded data and also with other highly ranked GMPEs developed elsewhere and applicable for the region. Comparison of response spectra also have shown good agreement with recorded earthquake data. Quantitative analysis of residuals for the proposed GMPE and region specific GMPEs to predict Nepal-India 2011 earthquake of Mw of 5.7 records values shows that the proposed GMPE predicts Peak ground acceleration and spectral acceleration for entire distance and period range with lower percent residual when compared to exiting region specific GMPEs. Crown Copyright (C) 2013 Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Himalayas are one of very active seismic regions in the world where devastating earthquakes of 1803 Bihar-Nepal, 1897 Shillong, 1905 Kangra, 1934 Bihar-Nepal, 1950 Assam and 2011 Sikkim were reported. Several researchers highlighted central seismic gap based on the stress accumulation in central part of Himalaya and the non-occurrence of earthquake between 1905 Kangra and 1934 Bihar-Nepal. The region has potential of producing great seismic event in the near future. As a result of this seismic gap, all regions which fall adjacent to the active Himalayan region are under high possible seismic hazard due to future earthquakes in the Himalayan region. In this study, the study area of the Lucknow urban centre which lies within 350 km from the central seismic gap has been considered for detailed assessment of seismic hazard. The city of Lucknow also lies close to Lucknow-Faizabad fault having a seismic gap of 350 years. Considering the possible seismic gap in the Himalayan region and also the seismic gap in Lucknow-Faizabad fault, the seismic hazard of Lucknow has been studied based on deterministic and the probabilistic seismic hazard analysis. Results obtained show that the northern and western parts of Lucknow are found to have a peak ground acceleration of 0.11-0.13 g, which is 1.6- to 2.0-fold higher than the seismic hazard compared to the other parts of Lucknow.