905 resultados para Facial expression in art.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To review the epidemiology of facial fractures in children and to analyze whether it has changed over time. STUDY DESIGN: Retrospective review of records of children aged < or = 15 years diagnosed for fracture during 2 10-year periods. RESULTS: A total of 378 children were diagnosed with fractures, 187 in 1980-1989 and 191 in 1993-2002. The proportion of children with mandibular fractures decreased by 13.6 percentage-points from the first period to the second, whereas the proportion of patients with midfacial fractures increased by 18.7 percentage-points. Assault as a causative factor increased by 5.5 percentage-points, almost exclusively among children aged 13-15 years, with a high percentage (23.5%). CONCLUSIONS: Recognition of a change in fracture patterns over time is probably due to the increased use of computerized tomographic scanning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dopamine deficiency in Parkinson's disease leads to numerous molecular changes in basal ganglia. However, the consequences of these changes on the motor cortex remain unclear. Here we show that the immunoreactivity of parvalbumin, which is expressed in GABAergic interneurons, increases in the primary motor cortex of parkinsonian rats. This increase can be reversed by a subsequent lesion of the subthalamic nucleus. These results suggest that dopamine deficiency induces reversible changes in GABAergic cortical cells, which might be linked with parkinsonian symptoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hemispheric lateralization is well known in the cerebral cortex, but not in subcortical structures like basal ganglia. The goal of our study was to determine whether lateralization was present in the direct and indirect striatal pathways. We studied gene expression in the striatum of healthy rats, which was divided into two sectors, medial and lateral. Dynorphin (DYN) and enkephalin (ENK) mRNA were analyzed as markers of the direct and indirect striatal pathways, respectively and glutamic acid decarboxylase (GAD) mRNA was analyzed as a marker of all medium spiny neurons. DYN and GAD mRNA expression was higher on the left hemisphere in the medial sector of the striatum, but not in the lateral one. We did not observe any difference between sides with ENK mRNA expression. We suggest the presence of a lateralization in the medial striatum, which is specific for the direct striatal pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adenosine A2A receptors are present on enkephalinergic medium sized striatal neurons in the rat and have an important function in the modulation of striatal output. In order to establish more accurately whether adenosine transmission is a generalized phenomenon in mammalian striatum we compared the A2A R expression in the mouse, rat, cat and human striatum. Secondly we compared the modulation of enkephalin gene expression and A2A receptor gene expression in rat striatal neurons after 6-OH-dopamine lesion of the substantia nigra. Hybridization histochemistry was performed with a 35S-labelled radioactive oligonucleotide probe. The results showed high expression of A2A adenosine receptor genes only in the medium-sized cells of the striatum in all examined species. In the rat striatum, expression of A2A receptors was not significantly altered after lesion of the dopaminergic pathways with 6-OH-dopamine even though enkephalin gene expression was up-regulated. The absence of a change in A2A receptor gene expression after 6-OH-dopamine treatment speaks against a dependency on dopaminergic innervation. The maintained inhibitory function of A2A R on motor activity in spite of dopamine depletion could be partly responsible for the depression of locomotor activity observed in basal ganglia disorders such as Parkinson's disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS: A high-fructose diet (HFrD) may play a role in the obesity and metabolic disorders epidemic. In rodents, HFrD leads to insulin resistance and ectopic lipid deposition. In healthy humans, a four-week HFrD alters lipid homoeostasis, but does not affect insulin sensitivity or intramyocellular lipids (IMCL). The aim of this study was to investigate whether fructose may induce early molecular changes in skeletal muscle prior to the development of whole-body insulin resistance. METHODS: Muscle biopsies were taken from five healthy men who had participated in a previous four-week HFrD study, during which insulin sensitivity (hyperinsulinaemic euglycaemic clamp), and intrahepatocellular lipids and IMCL were assessed before and after HFrD. The mRNA concentrations of 16 genes involved in lipid and carbohydrate metabolism were quantified before and after HFrD by real-time quantitative PCR. RESULTS: HFrD significantly (P<0.05) increased stearoyl-CoA desaturase-1 (SCD-1) (+50%). Glucose transporter-4 (GLUT-4) decreased by 27% and acetyl-CoA carboxylase-2 decreased by 48%. A trend toward decreased peroxisomal proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) was observed (-26%, P=0.06). All other genes showed no significant changes. CONCLUSION: HFrD led to alterations of SCD-1, GLUT-4 and PGC-1alpha, which may be early markers of insulin resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here we investigate the expression of OCT4 human lung adenocarcinoma and bronchioloalveolar carcinoma (BAC) tumor biopsies and tumor-derived primary cell cultures. OCT4 has been detected in several human tumors suggesting a potentially critical role in tumorigenesis. We assessed the presence of OCT4 in clinical tumor samples of both adenocarcinoma and BAC at the cellular and transcriptional levels, respectively. Furthermore, we evaluated tumor-derived cell cultures for potential differences in OCT4 expression. Immunohistochemical analysis depicted OCT4 in 2 of 8 adenocarcinoma tumor samples and 3 of 5 BAC tumor samples, with no apparent difference in the degree of expression among the sections examined. These results were validated by transcript analysis. Flow cytometric assessment of 11 adenocarcinoma-derived cell cultures and 3 BAC-derived cell cultures revealed significantly higher OCT4 expression in adenocarcinoma tumors compared to their normal counterparts. This, however, was not observed in the BAC cultures. Comparative studies of OCT4 in adenocarcinoma and BAC tumor cell cultures demonstrated a dramatically higher expression in the former. The expression of OCT4 may represent a specific and effective target for therapeutic intervention in adenocarcinoma and BAC. In addition, the aberrant expression and distribution of OCT4 may indicate important parameters concerning the differences between adenocarcinoma and BAC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study determined the potential for neotissue formation and the role of STRO-1+ cells in immature versus mature articular cartilage. Cartilage explants from immature and mature bovine knee joints were cultured for up to 12 weeks and stained with safranin-O, for type II collagen and STRO-1. Bovine chondrocyte pellet cultures and murine knee joints at the age of 2 weeks and 3 months, and surgically injured cartilage, were analyzed for changes in STRO-1 expression patterns. Results show that immature explants contained more STRO-1+ cells than mature explants. After 8 weeks in culture, immature explants showed STRO-1+ cell proliferation and newly formed tissue, which contained glycosaminoglycan and type II collagen. Mature cartilage explants showed only minimal cell expansion and neotissue formation. Pellet cultures with chondrocytes from immature cartilage showed increased glycosaminoglycan synthesis and STRO-1+ staining, as compared to pellets with mature chondrocytes. The frequency of STRO-1+ cells in murine knee joints significantly declined with joint maturation. Following surgical injury, immature explants had higher potential for tissue repair than mature explants. In conclusion, these findings suggest that the high percentage of STRO-1+ cells in immature cartilage changes with joint maturation. STRO-1+ cells have the potential to form new cartilage spontaneously and after tissue injury. (c) 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic rotator cuff tendon tears lead to fatty infiltration and muscle atrophy with impaired physiological functions of the affected muscles. However, the cellular and molecular mechanisms of corresponding pathophysiological processes remain unknown. The purpose of this study was to characterize the expression pattern of adipogenic (PPARgamma, C/EBPbeta) and myogenic (myostatin, myogenin, Myf-5) transcription factors in infraspinatus muscle of sheep after tenotomy, implantation of a tension device, refixation of the tendon, and rehabilitation, reflecting a model of chronic rotator cuff tears. In contrast to human patients, the presented sheep model allows a temporal evaluation of the expression of a given marker in the same individual over time. Semiquantitative RT/PCR analysis of PPARgammaã, myostatin, myogenin, Myf-5, and C/EBPbeta transcript levels was carried out with sheep muscle biopsy-derived total RNA. We found a significantly increased expression of Myf-5 and PPARgamma after tenotomy and a significant change for Myf-5 and C/EBPbeta after continuous traction and refixation. This experimental sheep model allows the molecular analysis of pathomechanisms of muscular changes after rotator cuff tear. The results point to a crucial role of the transcription factors PPARgamma, C/EBPbeta, and Myf-5 in impairment and regeneration of rotator cuff muscles after tendon tears in sheep.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both the biology and the therapeutic potential of the phosphoinositide 3-kinase (PI3K) signalling axis have been the subject of intense investigation; however, little is known about the regulation of PI3K expression. Emerging evidence indicates that PI3K levels change in response to cellular stimulation with insulin and nuclear receptor ligands, and during various physiological and pathological processes including differentiation, regeneration, hypertension and cancer. Recently identified mechanisms that control PI3K production include increased gene copy number in cancer, and transcriptional regulation of the p110alpha PI3K gene by FOXO3a, NF-kappaB and p53, and of the PI3K regulatory subunits by STAT3, EBNA-2 and SREBP. In most instances, however, the impact of alterations in PI3K expression on PI3K signalling and disease remains to be established.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical forces are essential for connective tissue homeostasis. The extracellular matrix (ECM) plays a key role in the transmission of forces generated by the organism (e.g. muscle contraction) and externally applied (e.g. gravity). The expression of specific ECM proteins such as collagens and tenascin-C, as well as of matrix metalloproteinases, involved in their turnover, is influenced by mechanical stimuli. The precise mechanisms by which mechanical strains are translated into chemical signals and lead to differential gene expression are however not fully understood. Cell-matrix adhesion sites are good candidates for hosting a "mechanosensory switch", as they transmit forces from the ECM to the cytoskeleton and vice versa by physically linking the cytoskeleton to the ECM. Integrins, transmembrane proteins located to these adhesion sites, have been shown to trigger a set of internal signaling cascades after mechanical stimulation. We have shown that the expression level of tenascin-C directly correlates with externally applied mechanical stress, as well as with RhoA/RhoA-dependent kinase-mediated cytoskeletal tension. Presumably other genes are regulated in a similar manner. The changes in ECM composition and mechanical properties derived from mechanical stress are relevant in medical intervention after ligament and tendon injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tenascins represent a family of extracellular matrix glycoproteins with distinctive expression patterns. Here we have analyzed the most recently described member, tenascin-W, in breast cancer. Mammary tumors isolated from transgenic mice expressing hormone-induced oncogenes reveal tenascin-W in the stroma around lesions with a high likelihood of metastasis. The presence of tenascin-W was correlated with the expression of its putative receptor, alpha8 integrin. HC11 cells derived from normal mammary epithelium do not express alpha8 integrin and fail to cross tenascin-W-coated filters. However, 4T1 mammary carcinoma cells do express alpha8 integrin and their migration is stimulated by tenascin-W. The expression of tenascin-W is induced by BMP-2 but not by TGF-beta1, though the latter is a potent inducer of tenascin-C. The expression of tenascin-W is dependent on p38MAPK and JNK signaling pathways. Since preinflammatory cytokines also act through p38MAPK and JNK signaling pathways, the possible role of TNF-alpha in tenascin-W expression was also examined. TNF-alpha induced the expression of both tenascin-W and tenascin-C, and this induction was p38MAPK- and cyclooxygenase-dependent. Our results show that tenascin-W may be a useful diagnostic marker for breast malignancies, and that the induction of tenascin-W in the tumor stroma may contribute to the invasive behavior of tumor cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiopulmonary bypass (CPB) may induce serious side effects, potentially leading to myocardial failure. The Na(+)-K(+)-ATPase is a key component for myocardial function. Due to its developmental regulation, results from adult studies cannot be adopted to the situation in childhood. Right atrial myocardium from patients with left-to-right shunts at atrial level (VO, n=8) and those without (NO, n=8) was excised during heart surgery before and after CPB. Na(+)-K(+)-ATPase isoforms ATP1A1 (p=0.008) and ATP1A3 (p=0.038) decreased during CPB, which decrease was restricted to the VO group. This study highlights the importance of the underlying heart defect for susceptibility to the effects of CPB, showing a reduced Na(+)-K(+)-ATPase mRNA expression only in patients with left-to-right shunts on the atrial level. This seemed to be an early molecular event, as apart from one, none of the patients showed heart failure before or after surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eph receptor tyrosine kinases and their membrane-bound ephrin ligands play key roles during morphogenesis and adult tissue homeostasis. Receptor-ligand interactions result in forward and reverse signalling from the receptor and ligand respectively. To delineate the role(s) of forward and reverse signalling in mammary gland biology we have established transgenic mice exhibiting mammary epithelial-specific overexpression of either the native ephrin-B2 or a dominant negative ephrin-B2 mutant incapable of reverse signalling. During pregnancy and lactation overexpression of the native ephrin-B2 resulted in precocious differentiation, whereas overexpression of mutated ephrin-B2 caused delayed epithelial differentiation and in disturbed tissue architecture. Both transgenes affected also mammary vascularisation. Whereas ephrin-B2 induced superfluous but organised capillaries, mutant ephrin-B2 overexpression resulted in an irregular vasculature with blind-ending capillaries. Mammary tumours were not observed in either transgenic line, however, the crossing with NeuT transgenic animals revealed that mutated ephrin-B2 expression significantly accelerated tumour growth and imposed a metastatic phenotype.