956 resultados para Exercise -- Immunological aspects
Resumo:
This work aimed to evaluate the effect of diphenyl dimethyl bicarboxylate (DDB) and dexamethasone alone and in combination with praziquantel on various parasitological, immunological and pathological parameters reflecting disease severity and morbidity in murine schistosomiasis. DDB and dexamethasone had no effect on worm burden but altered tissue egg distribution. This indicates that, under the schedule used, neither drug interfered with the development of adult worms or oviposition, but both can modulate liver pathology. Dexamethasone resulted in a greater reduction in granuloma size than did DDB. Dexamethasone-treated mice also showed lower levels of serum gamma interferon (IFN-γ), interleukin-12 (IL-12) and IL-4, together with higher IL-10 levels, than infected untreated control animals. These data suggest that dexamethasone is a convenient and promising coadjuvant agent that results in decreased morbidity in murine schistosomiasis.
Resumo:
The degree of reproductive isolation between Meccus phyllosomus and the remaining five species of the genus Meccus, as well as between Meccus bassolsae and Meccus pallidipennis, Meccus longipennis and Meccus picturatus, was examined. Fertility and the segregation of morphological characteristics were examined in two generations of hybrids from crosses between these species. The percentage of couples with offspring (fertile) was high in the vast majority of sets of crosses, with the exception of that between ♀M. phyllosomus and ♂Meccus mazzottii. In sets of crosses involving M. bassolsae specimens, no first-generation (F1) individuals were morphologically similar to M. bassolsae, but instead shared the morphology of the other parental species. A similar phenomenon was observed in most sets of crosses involving M. phyllosomus. These results indicated that different degrees of reproductive isolation exist among the species of Meccus involved in this study. The biological evidence obtained in this study does not support the proposal that M. bassolsae is a full species. It could indicate that, on the contrary, it should be considered a subspecies of a single polytypic species. The biological evidence does support the proposal that M. phyllosomus is a full species.
Resumo:
During recovery from a maximal or submaximal aerobic exercise, augmentation of central (aortic) systolic pressure by reflected pressure waves is blunted in healthy humans. However, the extent to which reflected pressure waves modify the central pulse in diastole in these conditions remains unknown. We evaluated systolic and diastolic central reflected waves in 11 endurance-trained athletes on recovery from a maximal running test on a treadmill (treadmill-max) and a 4000 m run in field conditions. On both occasions in each subject, the radial pulse was recorded with applanation tonometry in the resting preexercise state and then 5, 15, 25, 35, and 45 min after exercise termination. From the central waveform, as reconstructed by application of a generalized transfer function, we computed a systolic (AIx) and a diastolic index (AId) of pressure augmentation by reflections. At 5 min, both indices were below preexercise. At further time-points, AIx remained low, while AId progressively increased, to overshoot above preexercise at 45 min. The same behavior was observed with both exercise types. Beyond the first few minutes of recovery following either maximal or submaximal aerobic exercise, reflected waves selectively augment the central pressure pulse in diastole, at least in endurance-trained athletes.
Resumo:
A strict gluten-free diet (GFD) is the only currently available therapeutic treatment for patients with celiac disease (CD). Traditionally, treatment with a GFD has excluded wheat, barley and rye, while the presence of oats is a subject of debate. The most-recent research indicates that some cultivars of oats can be a safe part of a GFD. In order to elucidate the toxicity of the prolamins from oat varieties with low, medium, and high CD toxicity, the avenin genes of these varieties were cloned and sequenced, and their expression quantified throughout the grain development. At the protein level, we have accomplished an exhaustive characterization and quantification of avenins by RP-HPLC and an analysis of immunogenicity of peptides present in prolamins of different oat cultivars. Avenin sequences were classified into three different groups, which have homology with S-rich prolamins of Triticeae. Avenin proteins presented a lower proline content than that of wheat gliadin; this may contribute to the low toxicity shown by oat avenins. The expression of avenin genes throughout the development stages has shown a pattern similar to that of prolamins of wheat and barley. RP-HPLC chromatograms showed protein peaks in the alcohol-soluble and reduced-soluble fractions. Therefore, oat grains had both monomeric and polymeric avenins, termed in this paper gliadin- and glutenin-like avenins. We found a direct correlation between the immunogenicity of the different oat varieties and the presence of the specific peptides with a higher/lower potential immunotoxicity. The specific peptides from the oat variety with the highest toxicity have shown a higher potential immunotoxicity. These results suggest that there is wide range of variation of potential immunotoxicity of oat cultivars that could be due to differences in the degree of immunogenicity in their sequences.
Resumo:
SUMMARY Interest in developing intervention strategies against malaria by targeting the liver stage of the Plasmodium life cycle has been fueled by studies which show that sterile protective immunity can be achieved by immunization with radiation-attenuated sporozoites. Anti-malarial drugs and insecticides have been widely used to control the disease, but in the hope of developing a more cost-effective intervention strategy, vaccine development has taken centre stage in malaria research. There is currently no vaccine against malaria. Attenuated sporozoite-induced immunity is achieved by antibodies and T cells against malaria liver stage antigens, the most abundant being the circumsporozoite protein (CSP), and many vaccine formulations aim at mimicking this immunity. However, the mechanisms by which the antibody and T cell immune responses are generated after infection by sporozoites, or after immunization with different vaccine formulations are still not well understood. The first part of this work aimed at determining the ability of primary hepatocytes from BALB/c mice to process and present CSP-derived peptides after infection with P. berghei sporozoites. Both infected hepatocytes and those traversed by sporozoites during migration were found to be capable of processing and presenting the CSP to specific CD8+ T cells in vitro. The pathway of processing and presentation involved the proteasome, aspartic proteases and transport through a post-Endoplasmic Reticulum (ER) compartment. These results suggest that in vivo, infected hepatocytes contribute to the elicitation and expansion of a T cell response. In the second part, the antibody responses of CB6F1 mice to synthetic peptides corresponding to the N- and C-terminal domains of P. berghei and P. falciparum CS proteins were characterized. Mice were immunized with single peptides or a combination of N- and C-terminal peptides. The peptides were immunogenic in mice and the antisera generated could recognize the native CSP on the sporozoite surface. Antisera generated against the N-terminal peptides or against the combinations inhibited sporozoite invasion of hepatocytes in vitro. In vivo, more mice immunized with single P. berghei peptides were protected from infection upon a challenge with P. berghei sporozoites, than mice immunized with a combination of N- and C-terminal peptides. Furthermore, P. falciparum N-terminal peptides were recognized by serum samples from people living in malaria-endemic areas. Importantly, recognition of a peptide from the N-terminal fragment of the P. falciparum CSP by sera from children living in a malaria-endemic region was associated with protection from disease. These results underline the potential of using such peptides as malaria vaccine candidates. RESUME L'intérêt de développer des stratégies d'intervention contre la malaria ciblant le stade pré-erythrocytaire a été alimenté par des études qui montrent qu'il est possible d'obtenir une immunité par l'injection de sporozoites irradiés. Les médicaments et les insecticides anti-paludiques ont été largement utilisés pour contrôler la maladie, mais dans l'espoir de développer une stratégie d'intervention plus rentable, le développement de vaccins a été placé au centre des recherches actuelles contre la malaria. A l'heure actuelle, il n'existe aucun vaccin contre la malaria. L'immunité induite par les sporozoites irradiés est due à l'effet combiné d'anticorps et de cellules T qui agissent contre les antigènes du stade hépatique dont le plus abondant est la protéine circumsporozoite (CSP). Beaucoup de formulations de vaccin visent à imiter l'immunité induite par les sporozoites irradiés. Cependant, les mécanismes par lesquels les anticorps et les cellules T sont génerés après infection par les sporozoites ou après immunisation avec des formulations de vaccin ne sont pas bien compris. La première partie de ce travail a visé à déterminer la capacité de hépatocytes primaires provenant de souris BALB/c à "processer" et à présenter des peptides dérivés de la CSP, après infection par des sporozoites de Plasmodium berghei. Nous avons montré que in vitro, les hépatocytes infectés et ceux traversés par les sporozoites pendant leur migration étaient capables de "processer" et de présenter la CSP aux cellules T CD8+ spécifiques. La voie de présentation implique le protéasome, les protéases de type aspartique et le transport à travers un compartiment post-reticulum endoplasmique. Ces résultats suggèrent que in vivo, les hépatocytes infectés contribuent à l'induction et à l'expansion d'une réponse immunitaire spécifique aux cellules T. Dans la deuxième partie, nous avons caractérisé les réponses anticorps chez les souris de la souche CB6F1 face aux peptides N- et C-terminaux des protéines circumsporozoites de Plasmodium berghei et Plasmodium falciparum. Les souris ont été immunisées avec les peptides individuellement ou en combinaison. Les peptides utilisés étaient immunogéniques chez les souris, et les anticorps produits pouvaient reconnaître la protéine CSP native à la surface des sporozoites. In vitro, les sera contre les peptides N-teminaux et les combinaisons étaient capables d'inhiber l'invasion de hépatocytes par les sporozoites. In vivo, plus de souris immunisées avec les peptides individuels de la CSP de P. berghei étaient protégées contre la malaria que les souris immunisées avec une combinaison de peptides N- et C-terminaux. De plus, les peptides N-terminaux de la CSP de P. falciparum ont été reconnus par les sera de personnes vivant dans des régions endémiques pour la malaria. Il est intéressant de voir que la reconnaissance d'un peptide N-terminal de P. falciparum par des sera d'enfants habitant dans des régions endémiques était associé à la protection contre la maladie. Ces résultats soulignent le potentiel de ces peptides comme candidats-vaccin contre la malaria.
Resumo:
Nyssomyia intermedia and Nyssomyia neivai constitute a species complex associated with Leishmania transmission. The aim of this study was to analyse the ecological profiles of the Ny. intermedia and Ny. neivai populations in a sympatric area in the Brazilian savannah along the banks of the Velhas River. Captures were performed from July 2003-June 2005 in two distinct environments: a gallery forest with various degrees of anthropogenic modification and animal shelters. A total of 20,508 Ny. neivai (86%) and Ny. intermedia (14%) sandflies were collected. The difference between the proportions of the sandflies that were collected (Ny. neivai/Ny. intermedia) per bank was significant. The right bank presented a greater number of sandflies (65%) and more preserved vegetation. The abundance of Ny. neivai was higher than that of Ny. intermedia on both banks. The results demonstrate that anthropic activities can affect the sandfly populations in this area, thereby leading to a reduction in species abundance. Nevertheless, the environments with higher levels of antropogenic modification displayed sandfly population numbers that favour the Leishmania transmission cycle.
Resumo:
BACKGROUND: Long-term therapy with natalizumab increases the risk of progressive multifocal leukoencephalopathy (PML). OBJECTIVES: We present a patient study through therapy, the diagnosis of PML (after 29 infusions), plasma exchange (PE) and development of immune reconstitution inflammatory syndrome (IRIS). METHODS: Routine diagnostics, magnetic resonance imaging (MRI), immunological status (flow cytometry, T-cell migration assays and T-cell repertoire analysis), and brain biopsy with immunohistological analysis. RESULTS: CD49d decreased after 12 months of treatment. At PML diagnosis, CD49d expression and migratory capacity of T cells was low and peripheral T-cell receptor (TCR) complexity showed severe perturbations. The distribution of peripheral monocytes changed from CCR5+ to CCR7+. After PE some changes reverted: CD49d increased and overshot earliest levels, migratory capacities of T cells recovered and peripheral TCR complexity increased. With no clinical, routine laboratory or cerebrospinal fluid (CSF) changes, MRI 2 months after PE demonstrated progressive lesion development. Brain histopathology confirmed the presence of infiltrates indicative of IRIS without clinical signs, immunologically accompanied by CCR7/CCR5 recovery of peripheral monocytes. CONCLUSION: Natalizumab-associated immunological changes accompanying PML were reversible after PE; IRIS can occur very late, remain asymptomatic and be elusive to CSF analysis. Our study may provide insights into the changes under treatment with natalizumab associated with JC virus control.
Resumo:
Estimates of genetic susceptibility to leprosy were made in the past from observational reports in familial settings using descriptive epidemiologic data. Risk of conjugal transmission of leprosy (from one spouse to another) has been estimated between 1-10% and is thought to occur in 3-5% of spouses exposed to untreated lepromatous disease in the partner. Risk of secondary transmission is presumed higher in other family members than for the conjugal partner. This belief has become dogma to many leprologists who may no longer know the basis for this estimation. This article reviews the historic epidemiologic descriptions of risk for leprosy transmission in married couples compared to other family members. Although uncommon, conjugal leprosy occurs and at higher rates in populations with traditional familial intermarriage and consanguinity.
Resumo:
The European genus Ophrys (Orchidaceae) is famous for its insect-like floral morphology, an adaptation for a pseudocopulatory pollination strategy involving Hymenoptera males. A large number of endemic Ophrys species have recently been described, especially within the Mediterranean Basin, which is one of the major species diversity hotspots. Subtle morphological variation and specific pollinator dependence are the two main perceptible criteria for describing numerous endemic taxa. However, the degree to which endemics differ genetically remains a challenging question. Additionally, knowledge regarding the factors underlying the emergence of such endemic entities is limited. To achieve new insights regarding speciation processes in Ophrys, we have investigated species boundaries in the Fly Orchid group (Ophrys insectifera sensu lato) by examining morphological, ecological and genetic evidence. Classically, authors have recognized one widespread taxon (O. insectifera) and two endemics (O. aymoninii from France and O. subinsectifera from Spain). Our research has identified clear morphological and ecological factors segregating among these taxa; however, genetic differences were more ambiguous. Insights from cpDNA sequencing and amplified fragment length polymorphisms genotyping indicated a recent diversification in the three extant Fly Orchid species, which may have been further obscured by active migration and admixture across the European continent. Our genetic results still indicate weak but noticeable phylogeographic clustering that partially correlates with the described species. Particularly, we report several isolated haplotypes and genetic clusters in central and southeastern Europe. With regard to the morphological, ecological and genetic aspects, we discuss the endemism status within the Fly Orchid group from evolutionary, taxonomical and conservation perspectives.
Resumo:
A variety of host immunogenetic factors appear to influence both an individual's susceptibility to infection with Mycobacterium leprae and the pathologic course of the disease. Animal models can contribute to a better understanding of the role of immunogenetics in leprosy through comparative studies helping to confirm the significance of various identified traits and in deciphering the underlying mechanisms that may be involved in expression of different disease related phenotypes. Genetically engineered mice, with specific immune or biochemical pathway defects, are particularly useful for investigating granuloma formation and resistance to infection and are shedding new light on borderline areas of the leprosy spectrum which are clinically unstable and have a tendency toward immunological complications. Though armadillos are less developed in this regard, these animals are the only other natural hosts of M. leprae and they present a unique opportunity for comparative study of genetic markers and mechanisms associable with disease susceptibility or resistance, especially the neurological aspects of leprosy. In this paper, we review the recent contributions of genetically engineered mice and armadillos toward our understanding of the immunogenetics of leprosy.