974 resultados para Estrogen-receptor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During systemic disease in mice, Salmonella enterica grows intracellularly within discrete foci of infection in the spleen and liver. In concomitant infections, foci containing different S. enterica strains are spatially separated. We have investigated whether functional interactions between bacterial populations within the same host can occur despite the known spatial separation of the foci and independence of growth of salmonellae residing in different foci. In this study we have demonstrated that bacterial numbers of virulent S. enterica serovar Typhimurium C5 strain in mouse tissues can be increased by the presence of the attenuated aroA S. Typhimurium SL3261 vaccine strain in the same tissue. Disease exacerbation does not require simultaneous coinjection of the attenuated bacteria. SL3261 can be administered up to 48 hr after or 24 hr before the administration of C5 and still determine higher tissue numbers of the virulent bacteria. This indicates that intravenous administration of a S. enterica vaccine strain could potentially exacerbate an established infection with wild-type bacteria. These data also suggest that the severity of an infection with a virulent S. enterica strain can be increased by the prior administration of a live attenuated vaccine strain if infection occurs within 48 hr of vaccination. Exacerbation of the growth of C5 requires Toll-like receptor 4-dependent interleukin-10 production with the involvement of both Toll/interleukin-1 receptor-domain-containing adaptor inducing interferon-beta and myeloid differentiation factor 88.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dimorphic fungus Candida albicans is able to trigger a cytokine-mediated pro-inflammatory response that increases tumor cell adhesion to hepatic endothelium and metastasis. To check the intraspecific differences in this effect, we used an in vitro murine model of hepatic response against C. albicans, which made clear that tumor cells adhered more to endothelium incubated with blastoconidia, both live and killed, than germ tubes. This finding was related to the higher carbohydrate/protein ratio found in blastoconidia. In fact, destruction of mannose ligand residues on the cell surface by metaperiodate treatment significantly reduced tumor cell adhesion induced. Moreover, we also noticed that the effect of clinical strains was greater than that of the reference one. This finding could not be explained by the carbohydrate/protein data, but to explain these differences between strains, we analyzed the expression level of ten genes (ADH1, APE3, IDH2, ENO1, FBA1, ILV5, PDI1, PGK1, QCR2 and TUF1) that code for the proteins identified previously in a mannoprotein-enriched pro-metastatic fraction of C. albicans. The results corroborated that their expression was higher in clinical strains than the reference one. To confirm the importance of the mannoprotein fraction, we also demonstrate that blocking the mannose receptor decreases the effect of C. albicans and its mannoproteins, inhibiting IL-18 synthesis and tumor cell adhesion increase by around 60%. These findings could be the first step towards a new treatment for solid organ cancers based on the role of the mannose receptor in C. albicans-induced tumor progression and metastasis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El objetivo de este proyecto es estudiar la señalización del receptor P2X7 en respuesta a ATP en macrófagos J774A.1 y en células CHO K1. Para ello, se subclonó el gen que codifica para la proteína P2X7 en el vector PMT2 HA AA. Este plásmido fue transfectado a células CHO K1, J774.A1 y HEK 293T para distintas pruebas como la movilización de calcio intracelular para comprobar si ambos tipos celulares muestran la misma señal, y además se miró la expresión de este receptor y si su activación mediada por ATP se traduce en la activación de proteínas de la familia Rho. Se ha visto que las J774A.1 expresan funcionalmente el receptor P2X7, mientras que las CHO K1 muestran una respuesta funcional diferente que no se corresponde con la clásica señalización del P2X7 asociado a la apertura del canal y posterior poro. Además, al expresar el receptor en celúlas HEK 293T, se ha visto de una manera indirecta, midiendo la fosforilación de PAK, que la ruta de rac se regula de forma positiva cuando se activa el receptor P2X7 en macrófagos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overactivation of ionotropic glutamate receptors in oligodendrocytes induces cytosolic Ca2+ overload and excitotoxic death, a process that contributes to demyelination and multiple sclerosis. Excitotoxic insults cause well-characterized mitochondrial alterations and endoplasmic reticulum (ER) dysfunction, which is not fully understood. In this study, we analyzed the contribution of ER-Ca2+ release through ryanodine receptors (RyRs) and inositol triphosphate receptors (IP(3)Rs) to excitotoxicity in oligodendrocytes in vitro. First, we observed that oligodendrocytes express all previously characterized RyRs and IP(3)Rs. Blockade of Ca2+-induced Ca2+ release by TMB-8 following alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor-mediated insults attenuated both oligodendrocyte death and cytosolic Ca2+ overload. In turn, RyR inhibition by ryanodine reduced as well the Ca2+ overload whereas IP3R inhibition was ineffective. Furthermore, AMPA-triggered mitochondrial membrane depolarization, oxidative stress and activation of caspase-3, which in all instances was diminished by RyR inhibition. In addition, we observed that AMPA induced an ER stress response as revealed by alpha subunit of the eukaryotic initiation factor 2 alpha phosphorylation, overexpression of GRP chaperones and RyR-dependent cleavage of caspase-12. Finally, attenuating ER stress with salubrinal protected oligodendrocytes from AMPA excitotoxicity. Together, these results show that Ca2+ release through RyRs contributes to cytosolic Ca2+ overload, mitochondrial dysfunction, ER stress and cell death following AMPA receptor-mediated excitotoxicity in oligodendrocytes. Cell Death and Disease (2010) 1, e54; doi:10.1038/cddis.2010.31; published online 15 July 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Tie-2 receptor has been shown to play a role in angiogenesis in atherosclerosis. The conventional method assaying the level of soluble Tie-2 (sTie-2) was ELISA. However, this method has some disadvantages. The aims of this research are to establish a more simple detection method, the optical protein-chip based on imaging ellipsomtry (OPC-IE) applying to Tie-2 assay. The sTie-2 biosensor surface on silicon wafer was prepared first, and then serum levels of sTie-2 in 38 patients with AMI were measured on admission (day 1), day 2, day 3 and day 7 after onset of chest pain and 41 healthy controls by ELISA and OPC-IE in parallel. Median level of sTie-2 increased significantly in the AMI patients when compared with the controls. Statistics showed there was a significant correlation in sTie-2 results between the two methods (r=0.923, P0.01). The result of this study showed that the level of sTie-2 increased in AMI, and OPC-IE assay was a fast, reliable, and convenient technique to measure sTie-2 in serum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal fluctuation approach is widely used to monitor association kinetics of surface-bound receptor-ligand interactions. Various protocols such as sliding standard deviation (SD) analysis (SSA) and Page's test analysis (PTA) have been used to estimate two-dimensional (2D) kinetic rates from the time course of displacement of molecular carrier. In the current work, we compared the estimations from both SSA and modified PTA using measured data from an optical trap assay and simulated data from a random number generator. Our results indicated that both SSA and PTA were reliable in estimating 2D kinetic rates. Parametric analysis also demonstrated that such the estimations were sensitive to parameters such as sampling rate, sliding window size, and threshold. These results furthered the understandings in quantifying the biophysics of receptor-ligand interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because so little is known about the structure of membrane proteins, an attempt has been made in this work to develop techniques by which to model them in three dimensions. The procedures devised rely heavily upon the availability of several sequences of a given protein. The modelling procedure is composed of two parts. The first identifies transmembrane regions within the protein sequence on the basis of hydrophobicity, β-turn potential, and the presence of certain amino acid types, specifically, proline and basic residues. The second part of the procedure arranges these transmembrane helices within the bilayer based upon the evolutionary conservation of their residues. Conserved residues are oriented toward other helices and variable residues are positioned to face the surrounding lipids. Available structural information concerning the protein's helical arrangement, including the lengths of interhelical loops, is also taken into account. Rhodopsin, band 3, and the nicotinic acetylcholine receptor have all been modelled using this methodology, and mechanisms of action could be proposed based upon the resulting structures.

Specific residues in the rhodopsin and iodopsin sequences were identified, which may regulate the proteins' wavelength selectivities. A hinge-like motion of helices M3, M4, and M5 with respect to the rest of the protein was proposed to result in the activation of transducin, the G-protein associated with rhodopsin. A similar mechanism is also proposed for signal transduction by the muscarinic acetylcholine and β-adrenergic receptors.

The nicotinic acetylcholine receptor was modelled with four trans-membrane helices per subunit and with the five homologous M2 helices forming the cation channel. Putative channel-lining residues were identified and a mechanism of channel-opening based upon the concerted, tangential rotation of the M2 helices was proposed.

Band 3, the anion exchange protein found in the erythrocyte membrane, was modelled with 14 transmembrane helices. In general the pathway of anion transport can be viewed as a channel composed of six helices that contains a single hydrophobic restriction. This hydrophobic region will not allow the passage of charged species, unless they are part of an ion-pair. An arginine residue located near this restriction is proposed to be responsible for anion transport. When ion-paired with a transportable anion it rotates across the barrier and releases the anion on the other side of the membrane. A similar process returns it to its original position. This proposed mechanism, based on the three-dimensional model, can account for the passive, electroneutral, anion exchange observed for band 3. Dianions can be transported through a similar mechanism with the additional participation of a histidine residue. Both residues are located on M10.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neonatal Fe receptor (FeRn) binds the Fe portion of immunoglobulin G (IgG) at the acidic pH of endosomes or the gut and releases IgG at the alkaline pH of blood. FeRn is responsible for the maternofetal transfer of IgG and for rescuing endocytosed IgG from a default degradative pathway. We investigated how FeRn interacts with IgG by constructing a heterodimeric form of the Fe (hdFc) that contains one FeRn binding site. This molecule was used to characterize the interaction between one FeRn molecule and one Fe and to determine under what conditions FeRn forms a dimer. The hdFc binds one FeRn molecule at pH 6.0 with a K_d of 80 nM. In solution and with FeRn anchored to solid supports, the heterodimeric Fe does not induce a dimer of FeRn molecules. FcRnhdFc complex crystals were obtained and the complex structure was solved to 2.8 Å resolution. Analysis of this structure refined the understanding of the mechanism of the pH-dependent binding, shed light on the role played by carbohydrates in the Fe binding, and provided insights on how to design therapeutic IgG antibodies with longer serum half-lives. The FcRn-hdFc complex in the crystal did not contain the FeRn dimer. To characterize the tendency of FeRn to form a dimer in a membrane we analyzed the tendency of the hdFc to induce cross-phosphorylation of FeRn-tyrosine kinase chimeras. We also constructed FeRn-cyan and FeRn-yellow fluorescent proteins and have analyzed the tendency of these molecules to exhibit fluorescence resonance energy transfer. As of now, neither of these analyses have lead to conclusive results. In the process of acquiring the context to appreciate the structure of the FcRn-hdFc interface, we developed a study of 171 other nonobligate protein-protein interfaces that includes an original principal component analysis of the quantifiable aspects of these interfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assembling a nervous system requires exquisite specificity in the construction of neuronal connectivity. One method by which such specificity is implemented is the presence of chemical cues within the tissues, differentiating one region from another, and the presence of receptors for those cues on the surface of neurons and their axons that are navigating within this cellular environment.

Connections from one part of the nervous system to another often take the form of a topographic mapping. One widely studied model system that involves such a mapping is the vertebrate retinotectal projection-the set of connections between the eye and the optic tectum of the midbrain, which is the primary visual center in non-mammals and is homologous to the superior colliculus in mammals. In this projection the two-dimensional surface of the retina is mapped smoothly onto the two-dimensional surface of the tectum, such that light from neighboring points in visual space excites neighboring cells in the brain. This mapping is implemented at least in part via differential chemical cues in different regions of the tectum.

The Eph family of receptor tyrosine kinases and their cell-surface ligands, the ephrins, have been implicated in a wide variety of processes, generally involving cellular movement in response to extracellular cues. In particular, they possess expression patterns-i.e., complementary gradients of receptor in retina and ligand in tectum- and in vitro and in vivo activities and phenotypes-i.e., repulsive guidance of axons and defective mapping in mutants, respectively-consistent with the long-sought retinotectal chemical mapping cues.

The tadpole of Xenopus laevis, the South African clawed frog, is advantageous for in vivo retinotectal studies because of its transparency and manipulability. However, neither the expression patterns nor the retinotectal roles of these proteins have been well characterized in this system. We report here comprehensive descriptions in swimming stage tadpoles of the messenger RNA expression patterns of eleven known Xenopus Eph and ephrin genes, including xephrin-A3, which is novel, and xEphB2, whose expression pattern has not previously been published in detail. We also report the results of in vivo protein injection perturbation studies on Xenopus retinotectal topography, which were negative, and of in vitro axonal guidance assays, which suggest a previously unrecognized attractive activity of ephrins at low concentrations on retinal ganglion cell axons. This raises the possibility that these axons find their correct targets in part by seeking out a preferred concentration of ligands appropriate to their individual receptor expression levels, rather than by being repelled to greater or lesser degrees by the ephrins but attracted by some as-yet-unknown cue(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mannose receptor (MR) is widely expressed on macrophages, immature dendritic cells, and a variety of epithelial and endothelial cells. It is a 180 kD type I transmembrane receptor whose extracellular region consists of three parts: the amino-terminal cysteine-rich domain (Cys-MR); a fibronectin type II-like domain; and a series of eight tandem C-type lectin carbohydrate recognition domains (CRDs). Two portions of MR have distinct carbohydrate recognition properties: Cys-MR recognizes sulfated carbohydrates and the tandem CRD region binds terminal mannose, fucose, and N-acetyl-glucosamine (GlcNAc). The dual carbohydrate binding specificity allows MR to interact with sulfated and nonsulfated polysaccharide chains, and thereby facilitating the involvement of MR in immunological and physiological processes. The immunological functions of MR include antigen capturing (through binding non-sulfated carbohydrates) and antigen targeting (through binding sulfated carbohydrates), and the physiological roles include rapid clearance of circulatory luteinizing hormone (LH), which bears polysaccharide chains terminating with sulfated and non-sulfated carbohydrates.

We have crystallized and determined the X-ray structures of unliganded Cys-MR (2.0 Å) and Cys-MR complexed with different ligands, including Hepes (1.7 Å), 4SO_4-N-Acetylgalactosamine (4SO_4-GalNAc; 2.2 Å), 3SO_4-Lewis^x (2.2 Å), 3S04-Lewis^a (1.9 Å), and 6SO_4-GalNAc (2.5 Å). The overall structure of Cys-MR consists of 12 anti-parallel β-strands arranged in three lobes with approximate three fold internal symmetry. The structure contains three disulfide bonds, formed by the six cysteines in the Cys-MR sequence. The ligand-binding site is located in a neutral pocket within the third lobe, in which the sulfate group of ligand is buried. Our results show that optimal binding is achieved by a carbohydrate ligand with a sulfate group that anchors the ligand by forming numerous hydrogen bonds and a sugar ring that makes ring-stacking interactions with Trpll7 of CysMR. Using a fluorescence-based assay, we characterized the binding affinities between CysMR and its ligands, and rationalized the derived affinities based upon the crystal structures. These studies reveal the mechanism of sulfated carbohydrate recognition by Cys-MR and facilitate our understanding of the role of Cys-MR in MR recognition of its ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes studies surrounding a ligand-gated ion channel (LGIC): the serotonin type 3A receptor (5-HT3AR). Structure-function experiments using unnatural amino acid mutagenesis are described, as well as experiments on the methodology of unnatural amino acid mutagenesis. Chapter 1 introduces LGICs, experimental methods, and an overview of the unnatural amino acid mutagenesis.

In Chapter 2, the binding orientation of the clinically available drugs ondansetron and granisetron within 5-HT3A is determined through a combination of unnatural amino acid mutagenesis and an inhibition based assay. A cation-π interaction is found for both ondansetron and granisetron with a specific tryptophan residue (Trp183, TrpB) of the mouse 5-HT3AR, which establishes a binding orientation for these drugs.

In Chapter 3, further studies were performed with ondansetron and granisetron with 5-HT3A. The primary determinant of binding for these drugs was determined to not include interactions with a specific tyrosine residue (Tyr234, TyrC2). In completing these studies, evidence supporting a cation-π interaction of a synthetic agonist, meta-chlorophenylbiguanide, was found with TyrC2.

In Chapter 4, a direct chemical acylation strategy was implemented to prepare full-length suppressor tRNA mediated by lanthanum(III) and amino acid phosphate esters. The derived aminoacyl-tRNA is shown to be translationally competent in Xenopus oocytes.

Appendix A.1 gives details of a pharmacological method for determining the equilibrium dissociation constant, KB, of a competitive antagonist with a receptor, known as Schild analysis. Appendix A.2 describes an examination of the inhibitory activity of new chemical analogs of the 5-HT3A antagonist ondansetron. Appendix A.3 reports an organic synthesis of an intermediate for a new unnatural amino acid. Appendix A.4 covers an additional methodological examination for the preparation of amino-acyl tRNA.