966 resultados para Environmental monitoring Remote sensing
Resumo:
Tayrona National Natural Park (TNNP; 11°17' - 11°22' N and 73°53' - 74°12' W) is a hotspot of coral reef biodiversity in the Colombian Caribbean, located between the city of Santa Marta (>455,000 inhabitants) and several smaller river mouths (Rio Piedras, Mendihuaca, Guachaca). The region experiences a strong seasonal variation in physical parameters (temperature, salinity, wind, and water currents) due to alternating dry seasons with coastal upwelling and rainy seasons. Here, a range of water quality parameters relevant for coral reef functioning is provided. Water quality was measured directly above local coral reefs (~10 m water depth) by a monthly monitoring for up to 25 months in the four TNNP bays (Chengue, Gayraca, Neguanje, and Cinto) and at sites with different degree of exposition to winds, waves and water currents (exposed vs. sheltered sites) within each bay. The water quality parameters include: inorganic nutrient (nitrate, nitrite and soluble reactive phosphorus), chlorophyll a, particulate organic carbon and nitrogen concentrations (with a replication of n=3) as well as oxygen availability, biological oxygen demand, seawater pH, and water clarity (with a replication of n=4). This is by far the most comprehensive coral reefs water quality dataset for the region. A detailed description of the methods can be found within the referenced publications.
Resumo:
High-latitude ecosystems play an important role in the global carbon cycle and in regulating the climate system and are presently undergoing rapid environmental change. Accurate land cover data sets are required to both document these changes as well as to provide land-surface information for benchmarking and initializing Earth system models. Earth system models also require specific land cover classification systems based on plant functional types (PFTs), rather than species or ecosystems, and so post-processing of existing land cover data is often required. This study compares over Siberia, multiple land cover data sets against one another and with auxiliary data to identify key uncertainties that contribute to variability in PFT classifications that would introduce errors in Earth system modeling. Land cover classification systems from GLC 2000, GlobCover 2005 and 2009, and MODIS collections 5 and 5.1 are first aggregated to a common legend, and then compared to high-resolution land cover classification systems, vegetation continuous fields (MODIS VCFs) and satellite-derived tree heights (to discriminate against sparse, shrub, and forest vegetation). The GlobCover data set, with a lower threshold for tree cover and taller tree heights and a better spatial resolution, tends to have better distributions of tree cover compared to high-resolution data. It has therefore been chosen to build new PFT maps for the ORCHIDEE land surface model at 1 km scale. Compared to the original PFT data set, the new PFT maps based on GlobCover 2005 and an updated cross-walking approach mainly differ in the characterization of forests and degree of tree cover. The partition of grasslands and bare soils now appears more realistic compared with ground truth data. This new vegetation map provides a framework for further development of new PFTs in the ORCHIDEE model like shrubs, lichens and mosses, to represent the water and carbon cycles in northern latitudes better. Updated land cover data sets are critical for improving and maintaining the relevance of Earth system models for assessing climate and human impacts on biogeochemistry and biophysics.
Resumo:
In this study, ICESat altimetry data are used to provide precise lake elevations of the Tibetan Plateau (TP) during the period of 2003-2009. Among the 261 lakes examined ICESat data are available on 111 lakes: 74 lakes with ICESat footprints for 4-7 years and 37 lakes with footprints for 1 -3 years. This is the first time that precise lake elevation data are provided for the 111 lakes. Those ICESat elevation data can be used as baselines for future changes in lake levels as well as for changes during the 2003-2009 period. It is found that in the 74 lakes (56 salt lakes) examined, 62 (i.e. 84%) of all lakes and 50 (i.e. 89%) of the salt lakes show tendency of lake level increase. The mean lake water level increase rate is 0.23 m/year for the 56 salt lakes and 0.27 m/year for the 50 salt lakes of water level increase. The largest lake level increase rate (0.80 m/year) found in this study is the lake Cedo Caka. The 74 lakes are grouped into four subareas based on geographical locations and change tendencies in lake levels. Three of the four subareas show increased lake levels. The mean lake level change rates for subareas I, II, III, IV, and the entire TP are 0.12, 0.26, 0.19, -0.11, and 0.2 m/year, respectively. These recent increases in lake level, particularly for a high percentage of salt lakes, supports accelerated glacier melting due to global warming as the most likely cause.
Resumo:
Recent-past shoreline changes on reef islands are now subject to intensified monitoring via remote sensing data. Based on these data, rates of shoreline change calculated from long-term measurements (decadal) are often markedly lower than recent short-term rates (over a number of years). This observation has raised speculations about the growing influence of sea-level rise on reef island stability. This observation, however, can also be explained if we consider two basic principles of geomorphology and sedimentology. For Takú Atoll, Papua New Guinea, we show that natural shoreline fluctuations of dynamic reef islands have a crucial influence on the calculation of short-term rates of change. We analyze an extensive dataset of multitemporal shoreline change rates from 1943 to 2012 and find that differing rates between long- and short-term measurements consistently reflect the length of the observation interval. This relationship appears independent from the study era and indicates that reef islands were equally dynamic during the early periods of analysis, i.e. before the recent acceleration of sea-level rise. Consequently, we suggest that high rates of shoreline change calculated from recent short-term observations may simply result from a change in temporal scale and a shift from geomorphic equilibrium achieved over cyclic time towards an apparent disequilibrium during shorter periods of graded time. This new interpretation of short- and long-term shoreline change rates has important implications for the ongoing discussion about reef island vulnerability, showing that an observed jump from low to high rates of change may be independent from external influences, including but not limited to sea-level rise.
Resumo:
The overarching goal of the Yamal portion of the Greening of the Arctic project is to examine how the terrain and anthropogenic factors of reindeer herding and resource development combined with the climate variations on the Yamal Peninsula affect the spatial and temporal patterns of vegetation change and how these changes are in turn affecting traditional herding of the indigenous people of the region. The purpose of the expeditions was to collect groundobservations in support of remote sensing studies at four locations along a transect that traverses all the major bioclimate subzones of the Yamal Peninsula. This data report is a summary of information collected during the 2007 and 2008 expeditions. It includes all the information from the 2008 data report (Walker et al. 2008) plus new information collected at Kharasavey in Aug 2008. The locations included in this report are Nadym (northern taiga subzone), Laborovaya (southern tundra = subzone E of the Circumpolar Arctic Vegetation Map (CAVM), Vaskiny Dachi (southern typical tundra = subzone D), and Kharasavey (northern typical tundra = subzone C). Another expedition is planned for summer 2009 to the northernmost site at Belyy Ostrov (Arctic tundra = subzone B). Data are reported from 10 study sites - 2 at Nadym, 2 at Laborovaya, and 3 at Vaskiny Dachi and 3 at Kharasavey. The sites are representative of the zonal soils and vegetation, but also include variation related to substrate (clayey vs. sandy soils). Most of the information was collected along 5 transects at each sample site, 5 permanent vegetation study plots, and 1-2 soil pits at each site. The expedition also established soil and permafrost monitoring sites at each location. This data report includes: (1) background for the project, (2) general descriptions and photographs of each locality and sample site, (3) maps of the sites, study plots, and transects at each location, (4) summary of sampling methods used, (5) tabular summaries of the vegetation data (species lists, estimates of cover abundance for each species within vegetation plots, measured percent ground cover of species along transects, site factors for each study plot), (6) summaries of the Normalized Difference Vegetation Index (NDVI) and leaf area index (LAI) along each transect, (7) soil descriptions and photos of the soil pits at each study site, (8) summaries of thaw measurements along each transect, and (9) contact information for each of the participants. One of the primary objectives was to provide the Russian partners with full documentation of the methods so that Russian observers in future years could repeat the observations independently.
Resumo:
Atoll islands are subject to a variety of processes that influence their geomorphological development. Analysis of historical shoreline changes using remotely sensed images has become an efficient approach to both quantify past changes and estimate future island response. However, the detection of long-term changes in beach width is challenging mainly for two reasons: first, data availability is limited for many remote Pacific islands. Second, beach environments are highly dynamic and strongly influenced by seasonal or episodic shoreline oscillations. Consequently, remote-sensing studies on beach morphodynamics of atoll islands deal with dynamic features covered by a low sampling frequency. Here we present a study of beach dynamics for nine islands on Takú Atoll, Papua New Guinea, over a seven-decade period. A considerable chronological gap between aerial photographs and satellite images was addressed by applying a new method that reweighted positions of the beach limit by identifying "outlier" shoreline positions. On top of natural beach variability observed along the reweighted beach sections, we found that one third of the analyzed islands show a statistically significant decrease in reweighted beach width since 1943. The total loss of beach area for all islands corresponds to 44% of the initial beach area. Variable shoreline trajectories suggest that changes in beach width on Takú Atoll are dependent on local control (that is, human activity and longshore sediment transport). Our results show that remote imagery with a low sampling frequency may be sufficient to characterize prominent morphological changes in planform beach configuration of reef islands.
Resumo:
GlobCorine demonstrated an automatic service that can generate in a consistent way land cover / land use maps and land change indicators, based on a CLC-compatible legend. CLC is derived from a visual identification and classification of landscape objects using high resolution images. This methodology provides high thematic accuracy but limits the update rate since it is time-consuming. Therefore, the project evaluated the use of MERIS FR time series, processed automatically to provide a more frequent update of CLC-compatible maps. GlobCorine built upon the experience and resources available through the GlobCover project, to tune the classification chain and adapt it to the EEA needs, covering the pan-European area (including the Mediterranean basin and the European Russia), although the system could be potentially extendable globally. The project delivered two CLC-compatible pan-European land cover maps in less than two years, demonstrating efficient and quick production. The first map is based on Envisat MERIS fine resolution (300m) mode data acquired between end 2004 and mid 2006, while the second used full-year 2009 data. GlobCorine is an initiative of ESA with the partnership of EEA and is implemented by Universite' catholique de Louvain - UCL.
Resumo:
Underwater spectral reflectance was measured for selected biotic and abiotic coral reef features of Heron Reef from June 25-30, 2006. Spectral reflectance's of 105 different benthic types were obtained in-situ. An Ocean Optics USB2000 spectrometer was deployed in an custom made underwater housing with a 0.5 m fiber-optic probe mounted next to an artificial light source. Spectral readings were collected with the probe(bear fibre) about 5 cm from the target to ensure that the target would fill the field of view of the fiber optic (FOV diameter ~4.4 cm), as well as to reduce the attenuating effect of the intermediate water (Roelfsema et al., 2006). Spectral readings included for one target included: 1 reading of the covered spectral fibre to correct for instrument noise, 1 reading of spectralon panel mounted on divers wrist to measure incident ambient light, and 8 readings of the target. Spectral reflectance was calculated for each target by first subtracting the instrument noise reading from each other reading. The corrected target readings were then divided by the corrected spectralon reading resulting in spectral reflectance of each target reading. An average target spectral reflectance was calculated by averaging the eight individual spectral reflectance's of the target. If an individual target spectral reflectance was visual considered an outlier, it was not included in the average spectral reflectance calculation. See Roelfsema at al. (2006) for additional info on the methodology of underwater spectra collection.
Resumo:
Palaeoecological investigations in the larch forest-tundra ecotone in northern Siberia have the potential to reveal Holocene environmental variations, which likely have consequences for global climate change because of the strong high-latitude feedback mechanisms. A sediment core, collected from a small lake (radius ~100 m), was used to reconstruct the development of the lake and its catchment as well as vegetation and summer temperatures over the last 7100 calibrated years. A multi-proxy approach was taken including pollen and sedimentological analyses. Our data indicate a gradual replacement of open larch forests by tundra with scattered single trees as found today in the vicinity of the lake. An overall trend of cooling summer temperature from a ~2 °C warmer-than-present mid-Holocene summer temperatures until the establishment of modern conditions around 3000 years ago is reconstructed based on a regional pollen-climate transfer function. The inference of regional vegetation changes was compared to local changes in the lake's catchment. An initial small water depression occurred from 7100 to 6500 cal years BP. Afterwards, a small lake formed and deepened, probably due to thermokarst processes. Although the general trends of local and regional environmental change match, the lake catchment changes show higher variability. Furthermore, changes in the lake catchment slightly precede those in the regional vegetation. Both proxies highlight that marked environmental changes occurred in the Siberian forest-tundra ecotone over the course of the Holocene.
Resumo:
The routine use of spectrophotometry on the sediment surfaces of archive halves of each section during the onboard sedimentological core description process is a great stride toward development of real-time noninvasive characterization of deep-sea sediments. Spectral reflectance data have been used so far for mineral composition studies as well as for lithostratigraphic correlation between sites (Balsam and Deaton, 1991; Balsam et al., 1997; Mix et al., 1995; Ortiz et al., 1999). Their results demonstrate that spectrophotometry can estimate CaCO3 content by using the 4.65-, 5.25-, and 5.55-µm wavelength spectrums. A detailed overview of various other noninvasive methods is given in Ortiz and Rack (1999). The purpose of this study is to test whether spectrophotometry in the visible band can be used as a tool to gather further information about grain-size variation, sorting, compaction, and porosity, which are directly linked to the sedimentation process. From remote sensing data analyses, it is known that diffuse spectral reflectance data in the visible band in the wavelength window of 7.0-6.5 µm are sensitive to grain-size variations. It appears that a relationship between grain size and signal absorption exists only in this wavelength window. (e.g., Clark, 1999; Gaffey, 1986; Gaffey et al., 1993). Variations in grain size during a sedimentation process are linked to depositional energy, which affects sorting, compaction, and porosity of sediment deposits. As an example, we study here the spectrophotometric data of the sedimentary sequence of Hole 1098C, which was deposited under widely varying environmental conditions. Alternating turbidite and finely laminated sediments were recovered from Hole 1098C. The turbidites are related to a high depositional energy environment; the finely laminated sediments are related to a low depositional energy environment. Data from Hole 1098C were therefore used to test whether the spectral reflectance data can provide a proxy for these different depositional environments.