860 resultados para Enhanced optical transmission
Resumo:
Satellite data are increasingly used to provide observation-based estimates of the effects of aerosols on climate. The Aerosol-cci project, part of the European Space Agency's Climate Change Initiative (CCI), was designed to provide essential climate variables for aerosols from satellite data. Eight algorithms, developed for the retrieval of aerosol properties using data from AATSR (4), MERIS (3) and POLDER, were evaluated to determine their suitability for climate studies. The primary result from each of these algorithms is the aerosol optical depth (AOD) at several wavelengths, together with the Ångström exponent (AE) which describes the spectral variation of the AOD for a given wavelength pair. Other aerosol parameters which are possibly retrieved from satellite observations are not considered in this paper. The AOD and AE (AE only for Level 2) were evaluated against independent collocated observations from the ground-based AERONET sun photometer network and against “reference” satellite data provided by MODIS and MISR. Tools used for the evaluation were developed for daily products as produced by the retrieval with a spatial resolution of 10 × 10 km2 (Level 2) and daily or monthly aggregates (Level 3). These tools include statistics for L2 and L3 products compared with AERONET, as well as scoring based on spatial and temporal correlations. In this paper we describe their use in a round robin (RR) evaluation of four months of data, one month for each season in 2008. The amount of data was restricted to only four months because of the large effort made to improve the algorithms, and to evaluate the improvement and current status, before larger data sets will be processed. Evaluation criteria are discussed. Results presented show the current status of the European aerosol algorithms in comparison to both AERONET and MODIS and MISR data. The comparison leads to a preliminary conclusion that the scores are similar, including those for the references, but the coverage of AATSR needs to be enhanced and further improvements are possible for most algorithms. None of the algorithms, including the references, outperforms all others everywhere. AATSR data can be used for the retrieval of AOD and AE over land and ocean. PARASOL and one of the MERIS algorithms have been evaluated over ocean only and both algorithms provide good results.
Resumo:
The link between natural ion-line enhancements in radar spectra and auroral activity has been the subject of recent studies but conclusions have been limited by the spatial and temporal resolution previously available. The next challenge is to use shorter sub-second integration times in combination with interferometric programmes to resolve spatial structure within the main radar beam, and so relate enhanced filaments to individual auroral rays. This paper presents initial studies of a technique, using optical and spectral satellite signatures, to calibrate the received phase of a signal with the position of the scattering source along the interferometric baseline of the EISCAT Svalbard Radar. It is shown that a consistent relationship can be found only if the satellite passage through the phase fringes is adjusted from the passage predicted by optical tracking. This required adjustment is interpreted as being due to the vector between the theoretical focusing points of the two antennae, i.e. the true radar baseline, differing from the baseline obtained by survey between the antenna foot points. A method to obtain a measurement of the true interferometric baseline using multiple satellite passes is outlined.
Resumo:
In this paper we study the high-latitude plasma flow variations associated with a periodic (∼8 min) sequence of auroral forms moving along the polar cap boundary, which appear to be the most regularly occuring dayside auroral phenomenon under conditions of southward directed interplanetary magnetic field. Satellite data on auroral particle precipitation and ionospheric plasma drifts from DMSP F10 and F11 are combined with ground-based optical and ion flow measurements for January 7, 1992. Ionospheric flow measurements of 10-s resolution over the range of invariant latitudes from 71° to 76° were obtained by operating both the European incoherent scatter (EISCAT) UHF and VHF radars simultaneously. The optical site (Ny Ålesund, Svalbard) and the EISCAT radar field of view were located in the postnoon sector during the actual observations. The West Greenland magnetometers provided information about temporal variations of high-latitude convection in the prenoon sector. Satellite observations of polar cap convection in the northern and southern hemispheres show a standard two-cell pattern consistent with a prevailing negative By component of the interplanetary magnetic field. The 630.0 nm auroral forms located poleward of the persistent cleft aurora and the flow reversal boundary in the ∼1440–1540 MLT sector were observed to coincide with magnetosheath-like particle precipitation and a secondary population of higher energy ions, and they propagated eastward/tailward at speeds comparable with the convection velocity. It is shown that these optical events were accompanied by bursts of sunward (return) flow at lower latitudes in both the morning and the afternoon sectors, consistent with a modulation of Dungey cell convection. The background level of convection was low in this case (Kp =2+). The variability of the high-latitude convection may be explained as resulting from time-varying reconnection at the magnetopause. In that case this study indicates that time variations of the reconnection rate effectively modulates ionospheric convection.
Resumo:
Optical observations of a dayside auroral brightening sequence, by means of all-sky TV cameras and meridian scanning photometers, have been combined with EISCAT ion drift observations within the same invariant latitude-MLT sector. The observations were made during a January 1989 campaign by utilizing the high F region ion densities during the maximum phase of the solar cycle. The characteristic intermittent optical events, covering ∼300 km in east-west extent, move eastward (antisunward) along the poleward boundary of the persistent background aurora at velocities of ∼1.5 km s−1 and are associated with ion flows which swing from eastward to westward, with a subsequent return to eastward, during the interval of a few minutes when there is enhanced auroral emission within the radar field of view. The breakup of discrete auroral forms occurs at the reversal (negative potential) that forms between eastward plasma flow, maximizing near the persistent arc poleward boundary, and strong transient westward flow to the south. The reported events, covering a 35 min interval around 1400 MLT, are embedded within a longer period of similar auroral activity between 0830 (1200 MLT) and 1300 UT (1600 MLT). These observations are discussed in relation to recent models of boundary layer plasma dynamics and the associated magnetosphere-ionosphere coupling. The ionospheric events may correspond to large-scale wave like motions of the low-latitude boundary layer (LLBL)/plasma sheet (PS) boundary. On the basis of this interpretation the observed spot size, speed and repetition period (∼10 min) give a wavelength (the distance between spots) of ∼900 km in the present case. The events can also be explained as ionospheric signatures of newly opened flux tubes associated with reconnection bursts at the magnetopause near 1400 MLT. We also discuss these data in relation to random, patchy reconnection (as has recently been invoked to explain the presence of the sheathlike plasma on closed field lines in the LLBL). In view of the lack of IMF data, and the existing uncertainty on the location of the open-closed field line boundary relative to the optical events, an unambiguous discrimination between the different alternatives is not easily obtained.
Resumo:
Using a combination of idealized radiative transfer simulations and a case study from the first field campaign of the Saharan Mineral Dust Experiment (SAMUM) in southern Morocco, this paper provides a systematic assessment of the limitations of the widely used Spinning Enhanced Visible and Infrared Imager (SEVIRI) red-green-blue (RGB) thermal infrared dust product. Both analyses indicate that the ability of the product to identify dust, via its characteristic pink coloring, is strongly dependent on the column water vapor, the lower tropospheric lapse rate, and dust altitude. In particular, when column water vapor exceeds ∼20–25 mm, dust presence, even for visible optical depths of the order 0.8, is effectively masked. Variability in dust optical properties also has a marked impact on the imagery, primarily as a result of variability in dust composition. There is a moderate sensitivity to the satellite viewing geometry, particularly in moist conditions. The underlying surface can act to confound the signal seen through variations in spectral emissivity, which are predominantly manifested in the 8.7μm SEVIRI channel. In addition, if a temperature inversion is present, typical of early morning conditions over the Sahara and Sahel, an increased dust loading can actually reduce the pink coloring of the RGB image compared to pristine conditions. Attempts to match specific SEVIRI observations to simulations using SAMUM measurements are challenging because of high uncertainties in surface skin temperature and emissivity. Recommendations concerning the use and interpretation of the SEVIRI RGB imagery are provided on the basis of these findings.
Resumo:
Although glucocorticoids are widely used as antiinflammatory agents in clinical therapies, they may cause serious side effects that include insulin resistance and hyperinsulinemia. To study the potential functional adaptations of the islet of Langerhans to in vivo glucocorticoid treatment, adult Wistar rats received dexamethasone (DEX) for 5 consecutive days, whereas controls (CTL) received only saline. The analysis of insulin release in freshly isolated islets showed an enhanced secretion in response to glucose in DEX-treated rats. The study of Ca(2+) signals by fluorescence microscopy also demonstrated a higher response to glucose in islets from DEX-treated animals. However, no differences in Ca(2+) signals were found between both groups with tolbutamide or KCl, indicating that the alterations were probably related to metabolism. Thus, mitochondrial function was explored by monitoring oxidation of nicotinamide dinucleotide phosphate autofluorescence and mitochondrial membrane potential. Both parameters revealed a higher response to glucose in islets from DEX-treated rats. The mRNA and protein content of glucose transporter-2, glucokinase, and pyruvate kinase was similar in both groups, indicating that changes in these proteins were probably not involved in the increased mitochondrial function. Additionally, we explored the status of Ca(2+)-dependent signaling kinases. Unlike calmodulin kinase II, we found an augmented phosphorylation level of protein kinase C alpha as well as an increased response of the phospholipase C/inositol 1,4,5-triphosphate pathway in DEX-treated rats. Finally, an increased number of docked secretory granules were observed in the beta-cells of DEX animals using transmission electron microscopy. Thus, these results demonstrate that islets from glucocorticoid-treated rats develop several adaptations that lead to an enhanced stimulus-secretion coupling and secretory capacity. (Endocrinology 151: 85-95, 2010)
Resumo:
The authors present here a summary of their investigations of ultrathin films formed by gold nanoclusters embedded in polymethylmethacrylate polymer. The clusters are formed from the self-organization of subplantated gold ions in the polymer. The source of the low energy ion stream used for the subplantation is a unidirectionally drifting gold plasma created by a magnetically filtered vacuum arc plasma gun. The material properties change according to subplantation dose, including nanocluster sizes and agglomeration state and, consequently also the material electrical behavior and optical activity. They have investigated the composite experimentally and by computer simulation in order to better understand the self-organization and the properties of the material. They present here the results of conductivity measurements and percolation behavior, dynamic TRIM simulations, surface plasmon resonance activity, transmission electron microscopy, small angle x-ray scattering, atomic force microscopy, and scanning tunneling microscopy. (C) 2010 American Vacuum Society [DOI: 10.1116/1.3357287]
Resumo:
The analysis of histological sections has long been a valuable tool in the pathological studies. The interpretation of tissue conditions, however, relies directly on visual evaluation of tissue slides, which may be difficult to interpret because of poor contrast or poor color differentiation. The Chromatic Contrast Visualization System (CCV) combines an optical microscope with electronically controlled light-emitting diodes (LEDs) in order to generate adjustable intensities of RGB channels for sample illumination. While most image enhancement techniques rely on software post-processing of an image acquired under standard illumination conditions, CCV produces real-time variations in the color composition of the light source itself. The possibility of covering the entire RGB chromatic range, combined with the optical properties of the different tissues, allows for a substantial enhancement in image details. Traditional image acquisition methods do not exploit these visual enhancements which results in poorer visual distinction among tissue structures. Photodynamic therapy (PDT) procedures are of increasing interest in the treatment of several forms of cancer. This study uses histological slides of rat liver samples that were induced to necrosis after being exposed to PDT. Results show that visualization of tissue structures could be improved by changing colors and intensities of the microscope light source. PDT-necrosed tissue samples are better differentiated when illuminated with different color wavelengths, leading to an improved differentiation of cells in the necrosis area. Due to the potential benefits it can bring to interpretation and diagnosis, further research in this field could make CCV an attractive technique for medical applications.
Resumo:
In this paper, calcium molybdate (CaMoO(4)) crystals (meso- and nanoscale) were synthesized by the coprecipitation method using different solvent volume ratios (water/ethylene glycol). Subsequently, the obtained suspensions were processed in microwave-assisted hydrothermal/solvothermal systems at 140 degrees C for 1 h. These meso- and nanocrystals processed were characterized by X-ray diffraction (X R I)), Fourier transform Raman (FT-Raman), Fourier transform infrared (FT-IR). ultraviolet visible (UV-vis) absorption spectroscopies, held-emission gun scanning electron microscopy (FEG-SEM). transmission electron microscopy (TEM). and photoluminescence (PL) measurements. X RI) patterns and FT-Raman spectra showed that these meso- and nanocrystals have a scheelite-type tetragonal structure without the presence of deleterious phases. FT-IR spectra exhibited a large absorption band situated at around 827 cm(-1), which is associated with the Mo-O anti-symmetric stretching vibrations into the [MoO(4)] clusters. FEG-SEM micrographs indicated that the ethylene glycol concentration in the aqueous solution plays an important role in the morphological evolution of CaMoO(4) crystals. High-resolution TEM micrographs demonstrated that the mesocrystals consist of several aggregated nanoparticles with electron diffraction patterns of monocrystal. In addition, the differences observed in the selected area electron diffraction patterns of CaMoO(4) crystals proved the coexistence of both nano- and mesostructures, First-principles quantum mechanical calculations based on the density functional theory at the B3LYP level were employed in order to understand the band structure find density of states For the CaMoO(4). UV-vis absorption measurements evidenced a variation in optical band gap values (from 3.42 to 3.72 cV) for the distinct morphologies. The blue and green PI. emissions observed in these crystals were ascribed to the intermediary energy levels arising from the distortions on the [MoO(4)] clusters clue to intrinsic defects in the lattice of anisotropic/isotropic crystals.
Resumo:
Thermal Lens Spectrometry has traditionally been carried out in the single-beam and the mode-mismatched dual-beam configurations. Recently, a much more sensitive dual-beam TL setup was developed, where the probe beam is expanded and collimated. This feature optimizes Thermal Lens (TL) signal and allows the use of thicker samples, further improving the sensitivity. In this paper, we have made comparisons between the conventional and optimized TL configurations, and presented applications such as measurements of very low absorptions and concentrations in water and Cr(III) aqueous solution in the UV-vis range. For pure water we found linear absorption coefficients as low as the Raman scattering one due to the stretching vibrational modes of OH group. The detection limit was estimated 1 x 10(-6) cm(-1) with a 180-mW excitation power using a 100-mm cell length. This sensitivity is very high, considering that water has a photothermal enhancement factor similar to 33 times smaller than CCl(4), for example. For Cr(III) species in aqueous solution, the limit of detection (LOD) was estimated in similar to 40 ng mL(-1) at 514 nm, or similar to 10ng mL(-1) at 405 nm, which is similar to 30 times smaller than the LOD achieved with conventional transmission techniques. The more recent TL configuration is very attractive to obtain absorption spectra, since the result does not depend critically on the beam parameters, unlike the other configurations. The main drawbacks of this optimized TL configuration are the longer acquisition time and the need for larger samples. (C) 2011 Published by Elsevier B.V.
Resumo:
Ferrites of the type M(II)Fe(2)O(4) (M = Fe and Co) have been prepared by the traditional coprecipitation method. These ferrites were modified by the adsorption of fatty acids derived from soybean and castor oil and were then dispersed in cyclohexane, providing very stable magnetic fluids, readily usable in nonpolar media. The structural properties of the ferrites and modified ferrites as well as the magnetic fluids were characterized by XRD (X-ray powder diffraction), TEM (transmission electron microscopy), DRIFTS (diffusion reflectance infrared Fourier transform spectroscopy), FTMR (Fourier transform near-infrared), UV-vis, normal Raman spectroscopy, and surface-enhanced Raman scattering (SERS). XRD and TEM analysis have shown that the magnetic nanoparticles (nonmodified and modified) present diameters in the range of 10-15 nm. DRIFTS measurements have shown that the carboxylate groups of soybean and castor oil fatty acids adsorb on the ferrite surface, forming three different structures: a bridging bidentate, a bridging monodentate, and a bidentate chelate structure. The FTIR and Raman spectra of nonmodified Fe(3)O(4) and CoFe(2)O(4) nanoparticles have shown that the number of observed phonons is not compatible with the expected O(h)(7) symmetry, since IR-only active phonons were observed. in the Raman spectra and vice versa. SERS measurements of a CoFe(2)O(4) thin film on a SERS-active gold electrode at different applied potentials made possible the assignment of the signals near 550 and 630 cm(-1) to Co-O motions and the signals near 470 and 680 cm(-1) to Fe-O motions.
Resumo:
The intent of this paper is to present an analysis of optical holography. Both the physical theory behind holography and the experimental techniques used in making holograms will be presented. To accomplish this goal, the paper is divided into two independent sections: the theoretical section followed by the experimental section. Each section is intended to be a complete unit. The Theoretical Section is an exposure to the theory behind holography. This consists of a review of the concepts of interference and diffraction. followed by a brief review of partial coherence. The remaining part of the Theoretical Section is devoted to the mathematical analysis of optical holography. The Experimental Section begins with an introduction to the equipment and facilities currently available for optical holography at Colby College. Holographic procedures is dominated by the description of transmission holography (v.s. reflection. or white-light. holography). After these general holographic procedures a few variations on the basic transmission hologram are presented. The experimental section will end with an introduction to holographic interferometry, a major application of holographic techniques.
Resumo:
Langmuir films have been fabricated from poly[(2-methoxy-5-n-hexyloxy)-p-phenylenevinylene] (OC1OC6-PPV). The stability and the area per monomer for condensed films indicate the formation of true monolayers with a very small extent of aggregation, which is unusual for polymer films. This is attributed to the linearity of the alkyl side chain. The Y-type Langmuir-Blodgett (LB) films produced from Langmuir films of OC1OC6-PPV have distinctive features compared to those of cast films, probably due to the organization in the LB films whereas the molecules are randomly oriented in cast films. Infrared absorption spectra recorded for both transmission and reflection modes indicate that OC1OC6-PPV molecules are anchored to the substrate by the lateral groups. This is confirmed by the Raman spectrum, in which a distortion of the vinylene group was observed, and by surface enhanced fluorescence (SEF) on an LB monolayer deposited onto Ag nanoparticles. The more homogeneous nature of the LB films in comparison with the case of cast films was demonstrated by optical microscopy and fluorescence measurements where the emission spectra were essentially the same for different regions of an LB film but showed dispersion in cast films. The LB films also displayed reversible photoconductivity.
Resumo:
Thin solid films of bis benzimidazo perylene (AzoPTCD) were fabricated using physical vapor deposition (PVD) technique. Thermal stability and integrity of the AzoPTCD PVD films during the fabrication (similar to 400 degrees C at 10(-6) Torr) were monitored by Raman scattering. Complementary thermogravimetric results showed that thermal degradation of AzoPTCD occurs at 675 degrees C. The growth of the PVD films was established through UV-vis absorption spectroscopy, and the surface morphology was surveyed by atomic force microscopy (AFM) as a function of the mass thickness. The AzoPTCD molecular organization in these PVD films was determined using the selection rules of infrared absorption spectroscopy (transmission and reflection-absorption modes). Despite the molecular packing, X-ray diffraction revealed that the PVD films are amorphous. Theoretical calculations (density functional theory, B3LYP) were used to assign the vibrational modes in the infrared and Raman spectra. Metallic nanostructures, able to sustain localized surface plasmons (LSP) were used to achieve surface-enhanced resonance Raman scattering (SERRS) and surface-enhanced fluorescence (SEF).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)