837 resultados para Energy consumption.
Resumo:
The large scale urban consumption of energy (LUCY) model simulates all components of anthropogenic heat flux (QF) from the global to individual city scale at 2.5 × 2.5 arc-minute resolution. This includes a database of different working patterns and public holidays, vehicle use and energy consumption in each country. The databases can be edited to include specific diurnal and seasonal vehicle and energy consumption patterns, local holidays and flows of people within a city. If better information about individual cities is available within this (open-source) database, then the accuracy of this model can only improve, to provide the community data from global-scale climate modelling or the individual city scale in the future. The results show that QF varied widely through the year, through the day, between countries and urban areas. An assessment of the heat emissions estimated revealed that they are reasonably close to those produced by a global model and a number of small-scale city models, so results from LUCY can be used with a degree of confidence. From LUCY, the global mean urban QF has a diurnal range of 0.7–3.6 W m−2, and is greater on weekdays than weekends. The heat release from building is the largest contributor (89–96%), to heat emissions globally. Differences between months are greatest in the middle of the day (up to 1 W m−2 at 1 pm). December to February, the coldest months in the Northern Hemisphere, have the highest heat emissions. July and August are at the higher end. The least QF is emitted in May. The highest individual grid cell heat fluxes in urban areas were located in New York (577), Paris (261.5), Tokyo (178), San Francisco (173.6), Vancouver (119) and London (106.7). Copyright © 2010 Royal Meteorological Society
Resumo:
Collectively small and medium sized enterprises (SMEs) are significant energy users although many are unregulated by existing policies due to their low carbon emissions. Carbon reduction is often not a priority but smart grids may create a new opportunity. A smart grid will give electricity suppliers a picture of real-time energy flows and the opportunity for consumers to receive financial incentives for engaging in demand side management. As well as creating incentives for local carbon reduction, engaging SMEs with smart grids has potential for contributing to wider grid decarbonisation. Modelling of buildings, business activities and technology solutions is needed to identify opportunities for carbon reduction. The diversity of the SME sector complicates strategy development. SMEs are active in almost every business area and occupy the full range of property types. This paper reviews previous modelling work, exposing valuable data on floor space and energy consumption associated with different business activities. Limitations are seen with the age of this data and an inability to distinguish SME energy use. By modelling SME energy use, electrical loads are identified which could be shifted on demand, in a smart network. Initial analysis of consumption, not constrained by existing policies, identifies heating and cooling in retail and commercial offices as having potential for demand response. Hot water in hotel and catering and retail sectors may also be significant because of the energy storage potential. Areas to consider for energy efficiency schemes are also indicated.
Resumo:
How people live, work, move from place to place, consume and the technologies they use all affect heat emissions in a city which influences urban weather and climate. Here we document changes to a global anthropogenic heat flux (QF) model to enhance its spatial (30′′ × 30′′ to 0.5° × 0.5°) resolution and temporal coverage (historical, current and future). QF is estimated across Europe (1995–2015), considering changes in temperature, population and energy use. While on average QF is small (of the order 1.9–4.6 W m−2 across all the urban areas of Europe), significant spatial variability is documented (maximum 185 W m−2). Changes in energy consumption due to changes in climate are predicted to cause a 13% (11%) increase in QF on summer (winter) weekdays. The largest impact results from changes in temperature conditions which influences building energy use; for winter, with the coldest February on record, the mean flux for urban areas of Europe is 4.56 W m−2 and for summer (warmest July on record) is 2.23 W m−2. Detailed results from London highlight the spatial resolution used to model the QF is critical and must be appropriate for the application at hand, whether scientific understanding or decision making.
Resumo:
In 2007, the world reached the unprecedented milestone of half of its people living in cities, and that proportion is projected to be 60% in 2030. The combined effect of global climate change and rapid urban growth, accompanied by economic and industrial development, will likely make city residents more vulnerable to a number of urban environmental problems, including extreme weather and climate conditions, sea-level rise, poor public health and air quality, atmospheric transport of accidental or intentional releases of toxic material, and limited water resources. One fundamental aspect of predicting the future risks and defining mitigation strategies is to understand the weather and regional climate affected by cities. For this reason, dozens of researchers from many disciplines and nations attended the Urban Weather and Climate Workshop.1 Twenty-five students from Chinese universities and institutes also took part. The presentations by the workshop's participants span a wide range of topics, from the interaction between the urban climate and energy consumption in climate-change environments to the impact of urban areas on storms and local circulations, and from the impact of urbanization on the hydrological cycle to air quality and weather prediction.
Resumo:
Academic and industrial literature concerning the energy use of commercial kitchens is scarce. Electricity consumption data were collected from distribution board current transformers in a sample of fourteen UK public house-restaurants. This was set up to identify patterns of appliance use as well as to assess the total energy consumption of these establishments. The electricity consumption in the selected commercial kitchens was significantly higher than current literature estimates. On average, 63% of the premises’ electricity consumption was attributed to the catering activity. Key appliances that contributed to the samples average daily electricity consumption of the kitchen were identified as refrigeration (70 kWh, 41%), fryers (11 kWh, 13%), combination ovens (35 kWh, 12%), bain maries (27 kWh, 9%) and grills (37 kWh, 12%). Behavioural factors and poor maintenance were identified as major contributors to excessive electricity usage with potential savings of 70% and 45% respectively. Initiatives are required to influence operator behaviour, such as the expansion of mandatory energy labelling, improved feedback information and the use of behaviour change campaigns. Strict maintenance protocols and more appropriate sizing of refrigeration would be of great benefit to energy reduction.
Resumo:
The modern built environment has become more complex in terms of building types, environmental systems and use profiles. This complexity causes difficulties in terms of optimising buildings energy design. In this circumstance, introducing a set of prototype reference buildings, or so called benchmark buildings, that are able to represent all or majority parts of the UK building stock may be useful for the examination of the impact of national energy policies on building energy consumption. This study proposes a set of reference office buildings for England and Wales based on the information collected from the Non-Domestic Building Stock (NDBS) project and an intensive review of the existing building benchmarks. The proposed building benchmark comprises 10 prototypical reference buildings, which in relation to built form and size, represent 95% of office buildings in England and Wales. This building benchmark provides a platform for those involved in building energy simulations to evaluate energy-efficiency measures and for policy-makers to assess the influence of different building energy policies.
Resumo:
Embedded computer systems equipped with wireless communication transceivers are nowadays used in a vast number of application scenarios. Energy consumption is important in many of these scenarios, as systems are battery operated and long maintenance-free operation is required. To achieve this goal, embedded systems employ low-power communication transceivers and protocols. However, currently used protocols cannot operate efficiently when communication channels are highly erroneous. In this study, we show how average diversity combining (ADC) can be used in state-of-the-art low-power communication protocols. This novel approach improves transmission reliability and in consequence energy consumption and transmission latency in the presence of erroneous channels. Using a testbed, we show that highly erroneous channels are indeed a common occurrence in situations, where low-power systems are used and we demonstrate that ADC improves low-power communication dramatically.
Resumo:
There are no direct observational methods for determining the total rate at which energy is extracted from the solar wind by the magnetosphere. In the absence of such a direct measurement, alternative means of estimating the energy available to drive the magnetospheric system have been developed using different ionospheric and magnetospheric indices as proxies for energy consumption and dissipation and thus the input. The so-called coupling functions are constructed from the parameters of the interplanetary medium, as either theoretical or empirical estimates of energy transfer, and the effectiveness of these coupling functions has been evaluated in terms of their correlation with the chosen index. A number of coupling functions have been studied in the past with various criteria governing event selection and timescale. The present paper contains an exhaustive survey of the correlation between geomagnetic activity and the near-Earth solar wind and two of the planetary indices at a wide variety of timescales. Various combinations of interplanetary parameters are evaluated with careful allowance for the effects of data gaps in the interplanetary data. We show that the theoretical coupling, P�, function first proposed by Vasyliunas et al. is superior at all timescales from 1-day to 1-year.
Resumo:
In recent years, ZigBee has been proven to be an excellent solution to create scalable and flexible home automation networks. In a home automation network, consumer devices typically collect data from a home monitoring environment and then transmit the data to an end user through multi-hop communication without the need for any human intervention. However, due to the presence of typical obstacles in a home environment, error-free reception may not be possible, particularly for power constrained devices. A mobile sink based data transmission scheme can be one solution but obstacles create significant complexities for the sink movement path determination process. Therefore, an obstacle avoidance data routing scheme is of vital importance to the design of an efficient home automation system. This paper presents a mobile sink based obstacle avoidance routing scheme for a home monitoring system. The mobile sink collects data by traversing through the obstacle avoidance path. Through ZigBee based hardware implementation and verification, the proposed scheme successfully transmits data through the obstacle avoidance path to improve network performance in terms of life span, energy consumption and reliability. The application of this work can be applied to a wide range of intelligent pervasive consumer products and services including robotic vacuum cleaners and personal security robots1.
Resumo:
Health monitoring technologies such as Body Area Network (BAN) systems has gathered a lot of attention during the past few years. Largely encouraged by the rapid increase in the cost of healthcare services and driven by the latest technological advances in Micro-Electro-Mechanical Systems (MEMS) and wireless communications. BAN technology comprises of a network of body worn or implanted sensors that continuously capture and measure the vital parameters such as heart rate, blood pressure, glucose levels and movement. The collected data must be transferred to a local base station in order to be further processed. Thus, wireless connectivity plays a vital role in such systems. However, wireless connectivity comes at a cost of increased power usage, mainly due to the high energy consumption during data transmission. Unfortunately, battery-operated devices are unable to operate for ultra-long duration of time and are expected to be recharged or replaced once they run out of energy. This is not a simple task especially in the case of implanted devices such as pacemakers. Therefore, prolonging the network lifetime in BAN systems is one of the greatest challenges. In order to achieve this goal, BAN systems take advantage of low-power in-body and on-body/off-body wireless communication technologies. This paper compares some of the existing and emerging low-power communication protocols that can potentially be employed to support the rapid development and deployment of BAN systems.
Resumo:
Abstract: A new methodology was created to measure the energy consumption and related green house gas (GHG) emissions of a computer operating system (OS) across different device platforms. The methodology involved the direct power measurement of devices under different activity states. In order to include all aspects of an OS, the methodology included measurements in various OS modes, whilst uniquely, also incorporating measurements when running an array of defined software activities, so as to include OS application management features. The methodology was demonstrated on a laptop and phone that could each run multiple OSs, results confirmed that OS can significantly impact the energy consumption of devices. In particular, the new versions of the Microsoft Windows OS were tested and highlighted significant differences between the OS versions on the same hardware. The developed methodology could enable a greater awareness of energy consumption, during both the software development and software marketing processes.
Resumo:
The personalised conditioning system (PCS) is widely studied. Potentially, it is able to reduce energy consumption while securing occupants’ thermal comfort requirements. It has been suggested that automatic optimised operation schemes for PCS should be introduced to avoid energy wastage and discomfort caused by inappropriate operation. In certain automatic operation schemes, personalised thermal sensation models are applied as key components to help in setting targets for PCS operation. In this research, a novel personal thermal sensation modelling method based on the C-Support Vector Classification (C-SVC) algorithm has been developed for PCS control. The personal thermal sensation modelling has been regarded as a classification problem. During the modelling process, the method ‘learns’ an occupant’s thermal preferences from his/her feedback, environmental parameters and personal physiological and behavioural factors. The modelling method has been verified by comparing the actual thermal sensation vote (TSV) with the modelled one based on 20 individual cases. Furthermore, the accuracy of each individual thermal sensation model has been compared with the outcomes of the PMV model. The results indicate that the modelling method presented in this paper is an effective tool to model personal thermal sensations and could be integrated within the PCS for optimised system operation and control.
Resumo:
With the fast development of wireless communications, ZigBee and semiconductor devices, home automation networks have recently become very popular. Since typical consumer products deployed in home automation networks are often powered by tiny and limited batteries, one of the most challenging research issues is concerning energy reduction and the balancing of energy consumption across the network in order to prolong the home network lifetime for consumer devices. The introduction of clustering and sink mobility techniques into home automation networks have been shown to be an efficient way to improve the network performance and have received significant research attention. Taking inspiration from nature, this paper proposes an Ant Colony Optimization (ACO) based clustering algorithm specifically with mobile sink support for home automation networks. In this work, the network is divided into several clusters and cluster heads are selected within each cluster. Then, a mobile sink communicates with each cluster head to collect data directly through short range communications. The ACO algorithm has been utilized in this work in order to find the optimal mobility trajectory for the mobile sink. Extensive simulation results from this research show that the proposed algorithm significantly improves home network performance when using mobile sinks in terms of energy consumption and network lifetime as compared to other routing algorithms currently deployed for home automation networks.
Resumo:
Thermochromic windows are able to modulate their transmittance in both the visible and the near-infrared field as a function of their temperature. As a consequence, they allow to control the solar gains in summer, thus reducing the energy needs for space cooling. However, they may also yield a reduction in the daylight availability, which results in the energy consumption for indoor artificial lighting being increased. This paper investigates, by means of dynamic simulations, the application of thermochromic windows to an existing office building in terms of energy savings on an annual basis, while also focusing on the effects in terms of daylighting and thermal comfort. In particular, due attention is paid to daylight availability, described through illuminance maps and by the calculation of the daylight factor, which in several countries is subject thresholds. The study considers both a commercially available thermochromic pane and a series of theoretical thermochromic glazing. The expected performance is compared to static clear and reflective insulating glass units. The simulations are repeated in different climatic conditions, showing that the overall energy savings compared to clear glazing can range from around 5% for cold climates to around 20% in warm climates, while not compromising daylight availability. Moreover the role played by the transition temperature of the pane is examined, pointing out an optimal transition temperatures that is irrespective of the climatic conditions.
Resumo:
Buildings consume a large amount of energy, in both their use and production. Retrofitting aims to achieve a reduction in this energy consumption. However, there are concerns that retrofitting can cause negative impacts on the internal environment including poor thermal comfort and health issues. This research investigates the impact of retrofitting the façade of existing traditional buildings and the resulting impact on the indoor environment and occupant thermal comfort. A Case building located at the University of Reading has been monitored experimentally and modelled using IES software with monitored values as input conditions for the model. The proposed façade related retrofit options have been simulated and provide information on their effect on the indoor environment. The findings show a positive impact on the internal environment. The data shows a 16.2% improvement in thermal comfort after retrofit is simulated. This also achieved a 21.6% reduction in energy consumption from the existing building.