1000 resultados para Energia geotermica, energie rinnovabili, geotermico, calore della terra
Resumo:
A eficiencia energetica dos edificios e cada vez mais uma das prioridades nas agendas dos gestores comercias dos edifícios e proprietarios. Em parte deve-se ao processo de certificacao energetica dos edificios, que entrou em vigor em 2007, atraves dos Decretos de Lei 78/2006, 79/2006 e 80/2006. A solucao passa agora pela poupanca continua de energia atraves de uma eficiente Gestao Tecnica de Edificios.
Resumo:
A monitorização do estado de um qualquer processo industrial é uma ferramenta indispensável. A possibilidade de se conhecer o estado em que uma determinada máquina está a operar, bem como poder aferir do seu estado de funcionamento e do seu estado de conservação, permite aos operadores e responsáveis pelo escalonamento da manutenção, ter informação mais fidedigna sobre o real estado da máquina/sistema em que está a operar, bem como uma estimativa da data da próxima operação de manutenção. Normalmente, qualquer sistema de monitorização de máquinas elétricas rotativas envolve a medição de vibrações, temperaturas e espetro das correntes. Estes sinais, depois de adquiridos, são trabalhados com o objetivo de se poderem antecipar futuras falhas, mecânicas ou elétricas e prever avarias mais graves que possam ocorrer em outros componentes e que possam levar a uma paragem prolongada da máquina ou até mesmo à sua destruição. Como em qualquer outro tipo de negócio, a produção de energia através de parques eólicos, visa a maximização do lucro. Para que essa maximização seja efetiva são necessários sistemas fiáveis, com baixa taxa de avarias e, consequentemente, taxas de funcionamento elevadas. Está estimado que uma turbina com 20 anos de serviço, numa instalação onshore, tenha custos de exploração e manutenção que rondam os 10 a 15% da sua capacidade produtiva.
Resumo:
A producao de energia mecanica, atraves da utilizacao de motores electricos, absorve cerca de metade da energia electrica consumida no nosso Pais, da qual apenas metade e energia util. Este sector e, pois, um daqueles em que e preciso tentar fazer economias, prioritariamente. O exito neste dominio depende, em primeiro lugar, da melhor adequacao da potencia do motor a da maquina que ele acciona. Quando o regime de funcionamento e muito variavel para permitir este ajustamento, pode-se equipar o motor com um conversor electronico de variacao de velocidade. Outra possibilidade e a utilizacao dos motores “de perdas reduzidas” ou de “alto rendimento”, que permitem economias consideraveis. Tambem a nivel Europeu, os motores electricos representam uma das fontes mais consumidoras de energia: 70% do consumo electrico na industria e cerca de 1/3 do consumo electrico no sector dos servicos. Nos ultimos anos, muitos fabricantes de motores investiram fortemente na pesquisa e desenvolvimento de novos produtos com o objectivo de colocarem no mercado motores mais eficientes.
Resumo:
O projecto das instalações eléctricas deve responder a critérios de ordem técnica, nomeadamente no que se refere a garantia da protecção das pessoas e instalações, mas contrapõem-se necessariamente os aspectos de ordem económica; resultara do compromisso entre estas duas posições contrastantes a definição daquela que será a solução mais acertada para uma dada instalação. No capitulo dos custos associados a uma instalação eléctrica tem um peso crucial a energia desperdiçada durante o funcionamento da mesma, duração esta que pode em media considerar-se compreendida entre 20 e 30 anos. Este desperdício tem duas origens: perdas excessivas por ineficiente concepção das instalações e selecção não criteriosa de equipamentos que utilizam a energia eléctrica e malbaratamento da energia eléctrica por funcionamento alem do necessário. Poe-se, portanto, também neste domínio a questão da eficiência energética. Assim, o responsável pela concepção de uma instalação eléctrica devera procurar não somente a solução técnica funcional da mesma mas preocupar-se que essa solução seja igualmente eficiente do ponto de vista energético. A abordagem dum projecto eléctrico eficiente sob o ponto de vista energético devera contemplar os seguintes pontos: a) Minimização de perdas no sistema de distribuição b) Redução das perdas devido ao desperdício na utilização do equipamento eléctrico c) Redução das perdas associadas aos problemas associados a qualidade da energia d) Prever as instalações para incorporarem aparelhagem de contagem e medida para fins de monitorização e de realização de auditorias eléctricas.
Resumo:
Os impactos ambientais e económicos dos combustíveis fósseis têm uma forte proveniência do sector dos transportes. Este facto tem motivado, nas últimas décadas um aumento do desenvolvimento dos veículos eléctricos, principalmente, das soluções híbridas. Tais desenvolvimentos resultam da integração de diversos domínios da engenharia, sendo de destacar os novos materiais e concepções de motores eléctricos, a electrónica de potência, os sistemas de controlo e os sistemas de armazenamento de energia. Neste artigo procura‐se apresentar as principais características dos sistemas de propulsão eléctrica actuais. Começa‐se fazer uma comparação entre os veículos eléctricos e os convencionais, baseados nos motores térmicos de combustão interna. Pela sua importância, é feita uma referência sucinta aos sistemas de armazenamento de energia. São comparadas as características da propulsão eléctrica e térmica, sob a perspectiva das exigências dos sistemas de tracção. São referidos os principais tipos de sistemas de propulsão eléctrica (motor, conversor e controlador), vantagens e desvantagens relativas. Por último, uma abordagem acerca das tendências futuras dos veículos eléctricos.
Resumo:
Dissertação de mestrado em Geologia para o ensino
Resumo:
Portugal, produz apenas uma pequena parte da energia que consome, toda a restante energia consumida é importada. Portugal apresenta uma forte dependência energética do exterior, das maiores da UE. Não explorando quaisquer recursos energéticos fósseis no seu território desde 1995 (quando deixou de extrair carvão), a sua própria produção de energia assenta exclusivamente no aproveitamento dos recursos renováveis, como sendo a água, o vento, a biomassa e outros em menor escala. Esta situação tem consequências directas na nossa economia, uma vez que o custo dos combustíveis fósseis importados encarece a produção de bens e serviços em território nacional. Para além disso tem também implicações sociais, pois representa custos acrescidos para o consumidor e reflecte‐se no ambiente, devido à produção crescente de Gases com Efeito de Estufa (GEE). No ano de 2008 a potência instalada em Portugal era de 14916 MW, sendo que 30,7% dessa potência é da responsabilidade das centrais hidroeléctricas, 39,01% da responsabilidade de centrais termoeléctricas e 30,29% é referente a produção em regime especial (P.R.E.). De entre os P.R.E. destacam‐se os 2624 MW da responsabilidade de produtores eólicos e apenas 50 MW instalados em sistemas fotovoltaicos [1]. No entanto Portugal, à excepção do Chipre, tem a melhor insolação anual de toda a Europa, com valores 70% superiores aos verificados na Alemanha. Esta diferença leva a que o custo da electricidade produzida em condições idênticas seja 40% menor em Portugal. Este aspecto é uma enorme vantagem que tem de ser capitalizada.
Resumo:
O novo sistema nacional de certificação energética e da qualidade do ar interior em edifícios (SCE), que decorre da publicação dos DL, 78 a 80, de 4 de Abril de 2006, vêm impor um novo enquadramento regulamentar para a utilização de energia em edifícios no território nacional. Em particular para o caso dos grandes edifícios de serviços e para aqueles, de serviços ou residenciais, cujos sistemas de climatização ou de aquecimento de águas sanitárias (AQS) tenham uma potência superior a 25kw, o rsece-energia (DL 79/2006, de 4 de Abril), impõe indicadores de consumo específico máximo a verificar, denominados de indicadores de eficiência energética (IEE).
Resumo:
Segundo um estudo recente da União Europeia , o sector dos edifícios será responsável por cerca de 40% do consumo total de energia neste espaço geográfico. Cerca de 70% do consumo de energia deste sector verificarse‐ á nos edifícios residenciais. Em Portugal, mais de 28% da energia final e 60% da energia eléctrica é consumida em edifícios. Por forma a dar cumprimento ao Protocolo de Kyoto, no qual se definiu uma drástica redução da emissão de CO2, a Comunidade Europeia emanou várias directivas que se relacionam directa ou indirectamente com a temática da utilização de energia. As mais importantes são entre outras, a Directiva 2002/91/CE de 16 de Dezembro de 2002 ‐ “EPB ‐ Energy Performance of Buildings” (Desempenho Energético de Edifícios) , transposta parcialmente para o direito nacional pelo Decreto‐Lei nº 78/2006 de 04 de Abril, e a Directiva 2005/32/CE de 06 de Julho de 2005 – “EuP – Energy Using Products” (Requisitos de concepção ecológica dos produtos que consomem energia). Os ascensores não são referidos explicitamente nestas duas directivas, quando se aborda a temática do aumento da eficiência energética. Na Directiva EPB são referidos essencialmente equipamentos técnicos dos edifícios como sistemas de aquecimento, climatização e iluminação, bem como sistemas de isolamento térmico dos edifícios. Na EuP, por sua vez, também não se indicam especificamente os ascensores, embora sejam referidos por exemplo motores eléctricos, que farão parte integrante de um ascensor. De acordo com um estudo da S.A.F.E – “Agência Suiça para a Utilização Eficiente da Energia”, realizado em 2005, os ascensores podem representar uma parte significativa do consumo de energia num edifício (o consumo energético de um ascensor poder representar em média 5% do consumo total de energia de um edifício de escritórios). Na Suiça estima‐se que o somatório do consumo de energia dos cerca de 150.000 ascensores instalados represente cerca de 0,5% do total de 280 GWh de consumo energético do país. A redução do consumo de energia nos edifícios poderá ser obtida através da melhoria das características construtivas, reduzindo dessa forma as necessidades energéticas, através de medidas de gestão da procura, no sentido de reduzir os consumos na utilização e através do recurso a equipamentos energeticamente mais eficientes. No preâmbulo da Directiva EuP refere‐se que “a melhoria da eficiência energética – de que uma das opções disponíveis consiste na utilização final mais eficiente da electricidade – é considerada um contributo importante para a realização dos objectivos de redução das emissões de gases com efeito de estufa na Comunidade.” Daí que seja importante estudar também a optimização energética de ascensores. No presente artigo será apresentado um resumo do estudo sobre o consumo energético realizado a uma amostra composta por 20 ascensores eléctricos instalados pela Schmitt‐Elevadores, Lda. em Portugal. Para a determinação do consumo anual de energia a partir dos dados obtidos, foi utilizado um modelo, desenvolvido com base na norma alemã VDI 4707:2009. Com base nos dados obtidos foram então identificadas diversas hipóteses de optimização, que poderão e deverão ser implementadas.
Resumo:
Com a elevada evolução dos sistemas electrónicos e computacionais, associados a tecnologias de comunicação cada vez mais evoluídas, alcançou-se um novo domínio de aplicação tecnológica que tem por objectivo satisfazer as cada vez maiores necessidades de utilização racional da energia e proporcionar uma maior sensação de conforto aos utilizadores das instalações. Esta integração da electrónica com as tecnologias de comunicação de dados está na base de um conceito que começou a emergir no início dos anos 80 do século passado. Esta conjugação das tecnologias aplicada a ambientes residenciais, permite a realização de uma vasta gama de aplicações de gestão local ou remota, a nível de segurança, conforto, gestão de energia, etc. Assim apareceu o conceito de DOMÓTICA.
Resumo:
Os motores eléctricos, particularmente o motor assíncrono de indução, são o tipo de máquina mais utilizada na indústria em virtude da sua grande versatilidade, gama de potências, robustez, duração, reduzida manutenção, baixa poluição, facilidade de produção e custos de aquisição relativamente baixos. Como qualquer máquina, o motor eléctrico, responsável pela conversão de energia eléctrica em mecânica, apresenta perdas. O rendimento (ou eficiência) é definido como sendo a razão entre a potência de saída (ao nível do veio de saída do accionamento) e a potência eléctrica absorvida à entrada. A produção de energia mecânica, através da utilização de motores eléctricos, absorve cerca de 60% da energia eléctrica consumida no sector industrial do nosso País, da qual apenas metade é energia útil. Este sector é, pois, um daqueles em que é preciso tentar fazer economias, prioritariamente. Os sistemas de accionamentos têm que ser abordados como um todo, já que a existência de um componente de baixo rendimento influencia drasticamente o rendimento global. O êxito neste domínio depende, em primeiro lugar, da melhor adequação da potência do motor à da máquina que ele acciona. Quando o regime de funcionamento é muito variável para permitir este ajustamento, pode‐se equipar o motor com um conversor electrónico de variação de velocidade. Outra possibilidade é a utilização dos motores “ de perdas reduzidas”, de “alto rendimento”, ou “elevada eficiência”, que permitem economias energéticas consideráveis. Nos últimos anos, muitos fabricantes de motores investiram fortemente na pesquisa e desenvolvimento de novos produtos com o objectivo de colocarem no mercado motores mais eficientes. O acordo voluntário obtido em 1999 entre a CEMEP (Associação Europeia de Fabricantes de Motores Eléctricos) e a Comissão Europeia sobre o rendimento de motores de 2 e 4 pólos, na gama de potências 1,1 a 90 kW, foi revisto em 2004. Os motores foram classificados de acordo com o seu rendimento: ‐ EFF1 – Motores de alto rendimento; ‐ EFF2 – Motores de rendimento aumentado; ‐ EFF3 – Motores sem qualquer requisito especial. No seguimento da directiva "Eco‐design Directive (2005/32/CE) “ publicada em 2005 para Produtos que consomem energia (EUP), a Comissão Europeia aprovou em Julho de 2009 um regulamento de aplicação dos requisitos de concepção ecológica para os motores eléctricos, com efeitos a partir de meados de 2011, dando aos fabricantes de cerca de 2 anos para garantir que seus produtos cumprem a referida directiva. O lote 11 da Directiva EUP (Energy Using Products) descreve as orientações de design, a compatibilidade ambiental, o impacte ambiental e o consumo de energia de máquinas / motores eléctricos rotativos de alto rendimento. A directiva abrange os motores de 2, 4 e 6 pólos, na gama de potências de 0,75 a 375 kW. Neste âmbito, os motores passam a ser classificados por: ‐ IE1 (igual a EFF2) – com utilização proibida; ‐ IE2 (igual a EFF1) – com utilização obrigatória; ‐ IE3 (igual a Premium) – com utilização voluntária; ‐ IE4 (ainda não aplicável a accionamentos assíncronos).
Resumo:
Desde que foi publicado o Decreto‐Lei nº 363/2007 de 2 de Novembro, que tem por objecto estabelecer o regime jurídico aplicável à produção de electricidade por intermédio de unidades de microprodução, este tipo de instalações de pequena potência tem aumentado muito em Portugal. Dos diversos tipos de energia renovável previstos no referido Decreto‐Lei, tem sido a energia solar a que mais tem motivado os utilizadores a instalarem centrais de microprodução. A este facto não é com certeza alheia a tarifa aplicável à energia produzida através desta fonte de energia, à qual é aplicável 100% da tarifa de referência. A tabela 1 apresenta as instalações e as diversas potências de centrais de microprodução com origem em fontes renováveis registadas e instaladas desde a saída do Decreto‐ Lei. Dos valores apresentados na tabela anterior, mais de 90% são referentes a centrais fotovoltaicas, por esse motivo o elevado número de instalações justifica a importância do correcto dimensionamento das mesmas. No número anterior da revista Neutro à Terra foi feita uma abordagem aos equipamentos que se devem usar no dimensionamento de uma central fotovoltaica, neste artigo será feito um exemplo prático de aplicação da metodologia de dimensionamento.
Resumo:
De acordo com um estudo da S.A.F.E – “Agência Suíça para a Utilização Eficiente da Energia”, realizado em 2005, os ascensores podem representar uma parte significativa do consumo de energia num edifício (o consumo energético de um ascensor poder representar em média 5% do consumo total de energia de um edifício de escritórios). Na Suíça estima‐se que o somatório do consumo de energia dos cerca de 150.000 ascensores instalados represente cerca de 0,5% do total de 280 GWh de consumo energético do país. A redução do consumo de energia nos edifícios poderá ser obtida através da melhoria das características construtivas, reduzindo dessa forma as necessidades energéticas, através de medidas de gestão da procura, no sentido de reduzir os consumos na utilização e através do recurso a equipamentos energeticamente mais eficientes. No preâmbulo da Directiva 2005/32/CE de 06 de Julho de 2005 – “EuP – Energy Using Products” (Requisitos de concepção ecológica dos produtos que consomem energia)1 refere‐se que “a melhoria da eficiência energética – de que uma das opções disponíveis consiste na utilização final mais eficiente da electricidade – é considerada um contributo importante para a realização dos objectivos de redução das emissões de gases com efeito de estufa na Comunidade.” Daí que seja importante estudar também a optimização energética em novos ascensores.
Resumo:
O sector eléctrico foi, historicamente, um sector de monopólio natural, controlado por uma única entidade a qual assegurava as diversas actividades relacionadas com o fornecimento da energia eléctrica, desde a sua produção, transporte e distribuição até ao abastecimento ao consumidor final. Esta é uma realidade que tem vindo a ser radicalmente alterada nas últimas décadas. Após longos anos de actuação em regime de monopólio (público, privado ou misto) verticalmente integrado, verificaram-se em diversos países, em diferentes latitudes, várias experiências que resultaram em processos de desverticalização do sector com separação das suas actividades. O primeiro destes exemplos ocorreu no Chile no final da década de 70 do século XX, tendo as alterações consistido, basicamente, no fim dos monopólios da energia eléctrica e na introdução duma lógica de concorrência no mercado da electricidade. Esta passou a verificar-se na produção e na comercialização, mantendo-se como monopólios as actividades ligadas a infra-estruturas de rede como são o transporte e a distribuição.
Resumo:
Nas últimas décadas tem-se assistido a um forte desenvolvimento dos veículos eléctricos, sobretudo das soluções híbridas, como resposta aos impactos ambientais e económicos dos combustíveis fósseis. Os desafios que se colocam no campo da engenharia são múltiplos e exigentes, motivados pela necessidade de integrar diversas áreas, tais como, novos materiais e concepções de motores eléctricos, electrónica de potência, sistemas de controlo e sistemas de armazenamento de energia. Neste artigo procura-se apresentar as principais características dos veículos híbridos eléctricos (VH) e dos veículos puramente eléctricos (VE). Começa-se por uma breve referência à origem e evolução destes veículos. Segue-se uma abordagem às diferentes configurações de VH e VE – principalmente no que se refere aos sistemas de propulsão e armazenamento de energia–,realçando as suas vantagens e desvantagens. Por fim, referem-se alguns dos factores mais relevantes para a evolução tecnológica e aceitação destes veículos.