897 resultados para Endothelial nitric oxide synthase
Resumo:
PURPOSE:
To determine the in-field and out-of-field cell survival of cells irradiated with either primary field or scattered radiation in the presence and absence of intercellular communication.
METHODS AND MATERIALS:
Cell survival was determined by clonogenic assay in human prostate cancer (DU145) and primary fibroblast (AGO1552) cells following exposure to different field configurations delivered using a 6-MV photon beam produced with a Varian linear accelerator.
RESULTS:
Nonuniform dose distributions were delivered using a multileaf collimator (MLC) in which half of the cell population was shielded. Clonogenic survival in the shielded region was significantly lower than that predicted from the linear quadratic model. In both cell lines, the out-of-field responses appeared to saturate at 40%-50% survival at a scattered dose of 0.70 Gy in DU-145 cells and 0.24 Gy in AGO1522 cells. There was an approximately eightfold difference in the initial slopes of the out-of-field response compared with the a-component of the uniform field response. In contrast, cells in the exposed part of the field showed increased survival. These observations were abrogated by direct physical inhibition of cellular communication and by the addition of the inducible nitric oxide synthase inhibitor aminoguanidine known to inhibit intercellular bystander effects. Additional studies showed the proportion of cells irradiated and dose delivered to the shielded and exposed regions of the field to impact on response.
CONCLUSIONS:
These data demonstrate out-of-field effects as important determinants of cell survival following exposure to modulated irradiation fields with cellular communication between differentially irradiated cell populations playing an important role. Validation of these observations in additional cell models may facilitate the refinement of existing radiobiological models and the observations considered important determinants of cell survival.
Resumo:
OBJECTIVE:
Patients with type 2 diabetes mellitus (T2DM) are at increased risk of developing cardiovascular disease, largely as a result of defective production of cardioprotective nitric oxide and a concomitant rise in oxidative stress. Dietary interventions that could reverse this trend would be extremely beneficial. Here we investigated whether dietary n-3 polyunsaturated fatty acid (n-3 PUFA) supplementation positively affected platelet nitroso-redox imbalance.
RESEARCH DESIGN AND METHODS:
We randomized hypertensive T2DM patients (T2DM HT; n = 22) and age-and-sex matched hypertensive study participants without diabetes (HT alone; n = 23) in a double-blind, crossover fashion to receive 8 weeks of n-3 PUFAs (1.8 g eicosapentaenoic acid and 1.5 g docosahexaenoic acid) or identical olive oil capsules (placebo), with an intervening 8-week washout period. Platelet nitrite and superoxide were measured and compared before and after treatment; 8-isoprostane was determined by ELISA and subcellular compartmentalization of the NAD(P)H oxidase subunit p47-phox examined by Western blotting.
RESULTS:
The n-3 PUFA supplementation reduced 8-isoprostane and superoxide levels in platelets from T2DM HT, but not HT alone, participants, without effect on nitrite production. This coincided with a significant decrease in p47-phox membrane localization and a similar reduction in superoxide to that achieved with apocynin. At baseline, a subcohort of T2DM HT and HT alone participants showed evidence of nitric oxide synthase (NOS)-derived superoxide production, indicating defective enzymatic activity. This was reversed significantly in T2DM HT participants after treatment, demonstrating improved NOS function.
CONCLUSIONS:
Our finding that n-3 PUFAs diminish platelet superoxide production in T2DM HT patients in vivo suggests a therapeutic role for these agents in reducing the vascular-derived oxidative stress associated with diabetes.
Resumo:
Purpose:
To develop a model to describe the response of cell populations to spatially modulated radiation exposures of relevance to advanced radiotherapies.
Materials and Methods:
A Monte Carlo model of cellular radiation response was developed. This model incorporated damage from both direct radiation and intercellular communication including bystander signaling. The predictions of this model were compared to previously measured survival curves for a normal human fibroblast line (AGO1522) and prostate tumor cells (DU145) exposed to spatially modulated fields.
Results:
The model was found to be able to accurately reproduce cell survival both in populations which were directly exposed to radiation and those which were outside the primary treatment field. The model predicts that the bystander effect makes a significant contribution to cell killing even in uniformly irradiated cells. The bystander effect contribution varies strongly with dose, falling from a high of 80% at low doses to 25% and 50% at 4 Gy for AGO1522 and DU145 cells, respectively. This was verified using the inducible nitric oxide synthase inhibitor aminoguanidine to inhibit the bystander effect in cells exposed to different doses, which showed significantly larger reductions in cell killing at lower doses.
Conclusions:
The model presented in this work accurately reproduces cell survival following modulated radiation exposures, both in and out of the primary treatment field, by incorporating a bystander component. In addition, the model suggests that the bystander effect is responsible for a significant portion of cell killing in uniformly irradiated cells, 50% and 70% at doses of 2 Gy in AGO1522 and DU145 cells, respectively. This description is a significant departure from accepted radiobiological models and may have a significant impact on optimization of treatment planning approaches if proven to be applicable in vivo.
Resumo:
Bystander responses have been reported to be a major determinant of the response of cells to radiation exposure at low doses, including those of relevance to therapy. This study investigated the role of changes in calcium levels in bystander responses leading to chromosomal damage in nonirradiated T98G glioma cells and AG01522 fibroblasts that had been either exposed to conditioned medium from irradiated cells or co-cultured with a population where a fraction of cells were individually targeted through the nucleus or cytoplasm with a precise number of microbeam helium-3 particles. After the recipient cells were treated with conditioned medium from T98G or AG01522 cells that had been irradiated through either nucleus or cytoplasm, rapid calcium fluxes were monitored in the nonirradiated recipient cells. Their characteristics were dependent on the source of the conditioned medium but had no dependence on radiation dose. When recipient cells were co-cultured with an irradiated population of either T98G or AG01522 cells, micronuclei were induced in the nonirradiated cells, but this response was eliminated by treating the cells with calcicludine (CaC), a potent blocker of Ca2+ channels. Moreover, both the calcium fluxes and the bystander effect were inhibited when the irradiated T98G cells were treated with aminoguanidine, an inhibitor of nitric oxide synthase (NOS), and when the irradiated AG01522 cells were treated with DMSO, a scavenger of reactive oxygen species (ROS), which indicates that NO and ROS were involved in the bystander responses generated from irradiated T98G and AG01522 cells, respectively. Our findings indicate that calcium signaling may be an early response in radiation-induced bystander effects leading to chromosome damage. (c) 2006 by Radiation Research Society.
Resumo:
This is the first detailed description of the nitrergic nervous system in a fluke. In this study, the authors analysed the distribution of the nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) reactivity in neuronal and nonneuronal tissues of the adult fluke Fasciola hepatica and compared this with the distribution of the musculature using tetramethylrhodamine isothiocyanate-phalloidin. To assess the correlation between the number of muscle cells in different parts of the fluke and the NADPH-d-stained cells, the nuclei were stained with Hoechst 333 42, which is specific for chromatin. The spatial relation between the NADPH-d-positive nerves and the 5-hydroxytryptamine (serotonin; 5-HT)-immunoreactive (-IR) and GYIRFamide-IR nervous elements was also examined. The methods complement each other. NADPH-d-positive staining occurs in both in neuronal tissue and nonneuronal tissue. Large, NADPH-d-stained neurones were localised in the nervous system. The oral and ventral suckers are innervated with many large NADPH-d-stained neurones. Ln addition, the NADPH-d staining reaction follows closely the muscle fibres in both the suckers, in the body, and in the ducts of the reproductive organs. The presence of NADPH-d activity along muscle fibres in F. hepatica and in other flatworms supports a possible myoinhibitory role for nitric oxide. Neuronal nitric oxide synthase in flatworms may form a novel drug target, which would facilitate the development of a novel anthelminthic. (C) 2001 Wiley-Liss, Inc.
Resumo:
During the delivery of advanced radiotherapy treatment techniques modulated beams are utilised to increase dose conformity across the target volume. Recent investigations have highlighted differential cellular responses to modulated radiation fields particularly in areas outside the primary treatment field that cannot be accounted for by scattered dose alone. In the present study, we determined the DNA damage response within the normal human fibroblast AG0-1522B and the prostate cancer cell line DU-145 utilising the DNA damage assay. Cells plated in slide flasks were exposed to 1 Gy uniform or modulated radiation fields. Modulated fields were delivered by shielding 25%, 50% or 75% of the flask during irradiation. The average number of 53BP1 or ?H2AX foci was measured in 2 mm intervals across the slide area. Following 30 minutes after modulated radiation field exposure an increase in the average number of foci out-of-field was observed when compared to non-irradiated controls. In-field, a non-uniform response was observed with a significant decrease in the average number of foci compared to uniformly irradiated cells. Following 24 hrs after exposure there is evidence for two populations of responding cells to bystander signals in-and out-of-field. There was no significant difference in DNA damage response between 25%, 50% or 75% modulated fields. The response was dependent on cellular secreted intercellular signalling as physical inhibition of intercellular communication abrogated the observed response. Elevated residual DNA damage observed within out-of-field regions decreased following addition of an inducible nitric oxide synthase inhibitor (Aminoguanidine). These data show, for the first time, differential DNA damage responses in-and out-of-field following modulated radiation field delivery. This study provides further evidence for a role of intercellular communication in mediating cellular radiobiological response to modulated radiation fields and may inform the refinement of existing radiobiological models for the optimization of advanced radiotherapy treatment plans. © 2012 Trainor et al.
Resumo:
The role of hydrogen sulfide (H2 S) in inflammation remains unclear with both pro- and anti-inflammatory actions of this gas described. We have now assessed the effect of GYY4137 (a slow-releasing H2 S donor) on lipopolysaccharide (LPS)-evoked release of inflammatory mediators from human synoviocytes (HFLS) and articular chondrocytes (HAC) in vitro. We have also examined the effect of GYY4137 in a complete Freund's adjuvant (CFA) model of acute joint inflammation in the mouse. GYY4137 (0.1-0.5 mM) decreased LPS-induced production of nitrite (NO2 (-) ), PGE2 , TNF-a and IL-6 from HFLS and HAC, reduced the levels and catalytic activity of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and reduced LPS-induced NF-?B activation in vitro. Using recombinant human enzymes, GYY4137 inhibited the activity of COX-2, iNOS and TNF-a converting enzyme (TACE). In the CFA-treated mouse, GYY4137 (50 mg/kg, i.p.) injected 1 hr prior to CFA increased knee joint swelling while an anti-inflammatory effect, as demonstrated by reduced synovial fluid myeloperoxidase (MPO) and N-acetyl-ß-D-glucosaminidase (NAG) activity and decreased TNF-a, IL-1ß, IL-6 and IL-8 concentration, was apparent when GYY4137 was injected 6 hrs after CFA. GYY4137 was also anti-inflammatory when given 18 hrs after CFA. Thus, although GYY4137 consistently reduced the generation of pro-inflammatory mediators from human joint cells in vitro, its effect on acute joint inflammation in vivo depended on the timing of administration.
Resumo:
Oxidized and/or glycated low-density lipoprotein (LDL) may mediate capillary injury in diabetic retinopathy. The mechanisms may involve pro-inflammatory and pro-oxidant effects on retinal capillary pericytes. In this study, these effects, and the protective effects of pigment epithelium-derived factor (PEDF), were defined in a primary human pericyte model. Human retinal pericytes were exposed to 100 microg/ml native LDL (N-LDL) or heavily oxidized glycated LDL (HOG-LDL) with or without PEDF at 10-160 nM for 24 h. To assess pro-inflammatory effects, monocyte chemoattractant protein-1 (MCP-1) secretion was measured by ELISA, and nuclear factor-kappaB (NF-kappaB) activation was detected by immunocytochemistry. Oxidative stress was determined by measuring intracellular reactive oxygen species (ROS), peroxynitrite (ONOO(-)) formation, inducible nitric oxide synthase (iNOS) expression, and nitric oxide (NO) production. The results showed that MCP-1 was significantly increased by HOG-LDL, and the effect was attenuated by PEDF in a dose-dependent manner. PEDF also attenuated the HOG-LDL-induced NF-kappaB activation, suggesting that the inhibitory effect of PEDF on MCP-1 was at least partially through the blockade of NF-kappaB activation. Further studies demonstrated that HOG-LDL, but not N-LDL, significantly increased ONOO(-) formation, NO production, and iNOS expression. These changes were also alleviated by PEDF. Moreover, PEDF significantly ameliorated HOG-LDL-induced ROS generation through up-regulation of superoxide dismutase 1 expression. Taken together, these results demonstrate pro-inflammatory and pro-oxidant effects of HOG-LDL on retinal pericytes, which were effectively ameliorated by PEDF. Suppressing MCP-1 production and thus inhibiting macrophage recruitment may represent a new mechanism for the salutary effect of PEDF in diabetic retinopathy and warrants more studies in future.
Resumo:
PURPOSE. Limited mechanistic understanding of diabetic retinopathy (DR) has hindered therapeutic advances. Berberine, an isoquinolone alkaloid, has shown favorable effects on glucose and lipid metabolism in animal and human studies, but effects on DR are unknown. We previously demonstrated intraretinal extravasation and modification of LDL in human diabetes, and toxicity of modified LDL to human retinal M¨uller cells. We now explore pathogenic effects of modified LDL on M¨uller cells, and the efficacy of berberine in mitigating this cytotoxicity. METHODS. Confluent human M¨uller cells were exposed to in vitro–modified ‘highly oxidized, glycated (HOG-) LDL versus native-LDL (N-LDL; 200 mg protein/L) for 6 or 24 hours, with/ without pretreatment with berberine (5 lM, 1 hour) and/or the adenosine monophosphate (AMP)-activated protein kinase (AMPK) inhibitor, Compound C (5 lM, 1 hour). Using techniques including Western blots, reactive oxygen species (ROS) detection assay, and quantitative real-time PCR, the following outcomes were assessed: cell viability (CCK-8 assay), autophagy (LC3, Beclin-1, ATG-5), apoptosis (cleaved caspase 3, cleaved poly-ADP ribose polymerase), oxidative stress (ROS, nuclear factor erythroid 2-related factor 2, glutathione peroxidase 1, NADPH oxidase 4), angiogenesis (VEGF, pigment epithelium-derived factor), inflammation (inducible nitric oxide synthase, intercellular adhesion molecule 1, IL-6, IL-8, TNF-a), and glial cell activation (glial fibrillary acidic protein). RESULTS. Native-LDL had no effect on cultured human M¨uller cells, but HOG-LDL exhibited marked toxicity, significantly decreasing viability and inducing autophagy, apoptosis, oxidative stress, expression of angiogenic factors, inflammation, and glial cell activation. Berberine attenuated all the effects of HOG-LDL (all P < 0.05), and its effects were mitigated by AMPK inhibition (P < 0.05). CONCLUSIONS. Berberine inhibits modified LDL-induced M¨uller cell injury by activating the AMPK pathway, and merits further study as an agent for preventing and/or treating DR.
Resumo:
Iron plays a central role in host-parasite interactions, since both intervenients need iron for survival and growth, but are sensitive to iron-mediated toxicity. The host’s iron overload is often associated with susceptibility to infection. However, it has been previously reported that iron overload prevented the growth of Leishmania major, an agent of cutaneous leishmaniasis, in BALB/c mice. In order to further clarify the impact of iron modulation on the growth of Leishmania in vivo, we studied the effects of iron supplementation or deprivation on the growth of L. infantum, the causative agent of Mediterranean visceral leishmaniasis, in the mouse model. We found that dietary iron deficiency did not affect the protozoan growth, whereas iron overload decreased its replication in the liver and spleen of a susceptible mouse strain. The fact that the iron-induced inhibitory effect could not be seen in mice deficient in NADPH dependent oxidase or nitric oxide synthase 2 suggests that iron eliminates L. infantum in vivo through the interaction with reactive oxygen and nitrogen species. Iron overload did not significantly alter the mouse adaptive immune response against L. infantum. Furthermore, the inhibitory action of iron towards L. infantum was also observed, in a dose dependent manner, in axenic cultures of promastigotes and amastigotes. Importantly, high iron concentrations were needed to achieve such effects. In conclusion, externally added iron synergizes with the host’s oxidative mechanisms of defense in eliminating L. infantum from mouse tissues. Additionally, the direct toxicity of iron against Leishmania suggests a potential use of this metal as a therapeutic tool or the further exploration of iron anti-parasitic mechanisms for the design of new drugs.
Resumo:
Although chronic hypoxia is a claimed myocardial risk factor reducing tolerance to ischemia/reperfusion (I/R), intermittent reoxygenation has beneficial effects and enhances heart tolerance to I/R. AIM OF THE STUDY: To test the hypothesis that, by mimicking intermittent reoxygenation, selective inhibition of phosphodiesterase-5 activity improves ischemia tolerance during hypoxia. Adult male Sprague-Dawley rats were exposed to hypoxia for 15 days (10% O₂) and treated with placebo, sildenafil (1.4 mg/kg/day, i. p.), intermittent reoxygenation (1 h/day exposure to room air) or both. Controls were normoxic hearts. To assess tolerance to I/R all hearts were subjected to 30-min regional ischemia by left anterior descending coronary artery ligation followed by 3 h-reperfusion. Whereas hypoxia depressed tolerance to I/R, both sildenafil and intermittent reoxygenation reduced the infarct size without exhibiting cumulative effects. The changes in myocardial cGMP, apoptosis (DNA fragmentation), caspase-3 activity (alternative marker for cardiomyocyte apoptosis), eNOS phosphorylation and Akt activity paralleled the changes in cardioprotection. However, the level of plasma nitrates and nitrites was higher in the sildenafil+intermittent reoxygenation than sildenafil and intermittent reoxygenation groups, whereas total eNOS and Akt proteins were unchanged throughout. CONCLUSIONS: Sildenafil administration has the potential to mimic the cardioprotective effects led by intermittent reoxygenation, thereby opening the possibility to treat patients unable to be reoxygenated through a pharmacological modulation of NO-dependent mechanisms.
Resumo:
The concept that optic nerve fiber loss might be reduced by neuroprotection arose in the mid 1990s. The subsequent research effort, focused mainly on rodent models, has not yet transformed into a successful clinical trial, but provides mechanistic understanding of retinal ganglion cell death and points to potential therapeutic strategies. This review highlights advances made over the last year. In excitotoxicity and axotomy models retinal ganglion cell death has been shown to result from a complex interaction between retinal neurons and Müller glia, which release toxic molecules including tumor necrosis factor alpha. This counteracts neuroprotection by neurotrophins such as nerve growth factor, which bind to p75NTR receptors on Müller glia stimulating the toxic release. Another negative effect against neurotrophin-mediated protection involves the action of LINGO-1 at trkB brain-derived neurotrophic factor (BDNF) receptors, and BDNF neuroprotection is enhanced by an antagonist to LINGO-1. As an alternative to pharmacotherapy, retinal defences can be stimulated by exposure to infrared radiation. The mechanisms involved in glaucoma and other optic nerve disorders are being clarified in rodent models, focusing on retrograde degeneration following axonal damage, excitotoxicity and inflammatory/autoimmune mechanisms. Neuroprotective strategies are being refined in the light of the mechanistic understanding.
Resumo:
NMDA receptors (NMDARs) mediate ischemic brain damage, for which interactions between the C termini of NR2 subunits and PDZ domain proteins within the NMDAR signaling complex (NSC) are emerging therapeutic targets. However, expression of NMDARs in a non-neuronal context, lacking many NSC components, can still induce cell death. Moreover, it is unclear whether targeting the NSC will impair NMDAR-dependent prosurvival and plasticity signaling. We show that the NMDAR can promote death signaling independently of the NR2 PDZ ligand, when expressed in non-neuronal cells lacking PSD-95 and neuronal nitric oxide synthase (nNOS), key PDZ proteins that mediate neuronal NMDAR excitotoxicity. However, in a non-neuronal context, the NMDAR promotes cell death solely via c-Jun N-terminal protein kinase (JNK), whereas NMDAR-dependent cortical neuronal death is promoted by both JNK and p38. NMDAR-dependent pro-death signaling via p38 relies on neuronal context, although death signaling by JNK, triggered by mitochondrial reactive oxygen species production, does not. NMDAR-dependent p38 activation in neurons is triggered by submembranous Ca(2+), and is disrupted by NOS inhibitors and also a peptide mimicking the NR2B PDZ ligand (TAT-NR2B9c). TAT-NR2B9c reduced excitotoxic neuronal death and p38-mediated ischemic damage, without impairing an NMDAR-dependent plasticity model or prosurvival signaling to CREB or Akt. TAT-NR2B9c did not inhibit JNK activation, and synergized with JNK inhibitors to ameliorate severe excitotoxic neuronal loss in vitro and ischemic cortical damage in vivo. Thus, NMDAR-activated signals comprise pro-death pathways with differing requirements for PDZ protein interactions. These signals are amenable to selective inhibition, while sparing synaptic plasticity and prosurvival signaling.
Resumo:
This work aims at studing the role of tachykinin NK-3 receptor (R) and kinin B1R in central autonomic regulation of blood pressure (BP) and to determine whether the B1R is overexpressed and functional in rat models of hypertension by measuring the effect of a B1R agonist on behavioural activity. Assumptions: (1) NK-3R located in the ventral tegmental area (VTA) modulates the mesolimbic dopaminergic system and has a tonic activity in hypertension; (2) B1R is overexpressed in the brain of hypertensive rats and has a tonic activity, which contributes to hypertension via a dopamine mechanism; (3) the inhibition of NK-3R and B1R with selective antagonists, reduces central dopaminergic hyperactivity and reverses hypertension. A model of genetic hypertension and a model of experimental hypertension were used: spontaneously hypertensive rats (SHR, 16 weeks) and Wistar-Kyoto (WKY) rats infused for 14 days with angiotensin II (Ang II) (200 ng / kg / min, subcutaneous (s.c.) with Alzet mini pump). The age-matched untreated WKY rats served as common controls. In the first study (article # 1), the cardiovascular response in SHR was evaluated following intracebroventricular (i.c.v.) and/or intra-VTA injection of an agonist (senktide) and antagonists (SB222200 and R-820) of NK-3R. These responses have also been characterized using selective dopamine antagonists DA-D1R (SCH23390), DA-D2R (raclopride) or non-selective dopamine DA-D2R (haloperidol). Also the VTA has been destroyed by ibotenic acid. The pressor response induced by senktide and the anti-hypertensive response induced by SB222200 or R-820 were more pronounced by intra-VTA. These responses were prevented by pre-treatment with raclopride and haloperidol. The lesion of the VTA has prevented the pressor response relayed by senktide (i.c.v.) and the anti-hypertensive effect of R-820 (i.c.v.). In addition, SB222200 (intra-VTA) prevented the pressor response of senktide (i.c.v.) and conversely, senktide (i.c.v.) prevented the antihypertensive effect of SB222200 (intra-VTA). The second study (article # 2) showed that the B1R antagonist (SSR240612) administered by gavage or i.c.v. reverses hypertension in both models. This anti-hypertensive effect was prevented by raclopride and haloperidol. In contrast, the two B1R antagonists (R-715 and R-954) injected s.c., which do not cross the blood-brain barrier reduced weakly blood pressure in hypertensive rats. In the third study (article # 3), the i.c.v. injection of a selective kinin B1R agonist Sar[DPhe8][des-Arg9]BK caused behavioural responses in SHR and Ang II-treated rats and had no effect in control WKY rats . The responses elicited by B1R agonist were blocked by an antagonist of NK-1 (RP67580), an antagonist of NMDA glutamate receptor (DL-AP5), an inhibitor of nitric oxide synthase (NOS) (L -NNA) as well as raclopride and SCH23390.The responses were modestly affected by the inhibitor of inducible NOS (iNOS). The B1R mRNA (measured by RT-PCR) was significantly increased in the hypothalamus, the VTA and the nucleus accumbens of hypertensive animals (SHR and treated with Ang II) compared with control rats. These neuropharmacological studies suggest that: (1) the NK-3R from the VTA is involved in the maintenance of hypertension in SHR by increasing DA transmission in the midbrain; (2) the B1R in SHR and Ang II-treated rats contributes to hypertension via a central mechanism involving DA-D2R; (3) the central B1R increases locomotor activity and nocifensive behaviours via the release of substance P (NK-1), DA and nitric oxide in both rat models of hypertension. Thus, the brain tachykinin NK-3R and kinin B1R represent potential therapeutic targets for the treatment of hypertension. The modulation of the mesolimbic/mesocortical dopaminergic pathway by these receptors suggests their involvement in other physiological functions (pleasure, motor activity, coordination of the response to stress) and pathophysiology (anxiety, depression).
Resumo:
L’arthrose ou ostéoarthrose (OA) est l’affection rhumatologique la plus fréquente au monde. Elle est caractérisée principalement par une perte du cartilage articulaire et l’inflammation de la membrane synoviale. L’interleukine (IL)-1ß, une cytokine pro-inflammatoire, joue un rôle très important dans la pathogenèse de l’OA. Elle exerce son action en induisant l’expression des enzymes cyclo-oxygénase 2 (COX-2), prostaglandine E synthétase microsomale 1 (mPGES-1) et l’oxyde nitrique synthétase inductible (iNOS) ainsi que la production de la prostaglandine E2 (PGE2) et de l’oxyde nitrique (NO). Ces derniers (PGE2 et NO) contribuent à la synovite et la destruction du cartilage articulaire par leurs effets pro-inflammatoires, pro-cataboliques, anti-anaboliques, pro-angiogéniques et pro-apoptotiques. Les modifications épigénétiques, telles que la méthylation de l’ADN, et l’acétylation et la méthylation des histones, jouent un rôle crucial dans la régulation de l’expression des gènes. Parmi ces modifications, l’acétylation des histones est la plus documentée. Ce processus est contrôlé par deux types d’enzymes : les histones acétyltransférases (HAT) qui favorisent la transcription et les histones déacétylases (HDAC) qui l’inhibent. L’objectif de ce travail est d’examiner le rôle des enzymes HDAC dans la régulation de l’expression de la COX-2, mPGES-1 et iNOS. Nous avons montré qu’au niveau des chondrocytes, les inhibiteurs des HDAC (iHDAC), trichostatine A (TSA) et butyrate de sodium (NaBu), suppriment l’expression de la COX-2 et iNOS au niveau de l’ARNm et protéique, ainsi que la production de la PGE2 et du NO, induites par l’IL-1ß. L’effet inhibiteur à lieu sans affecter l’activité de liaison à l’ADN du facteur de transcription NF-κB (nuclear factor κ B). La TSA et le NaBu inhibent également la dégradation induite par l’IL-1ß des protéoglycanes au niveau du cartilage. Nous avons également montré, qu’au niveau des fibroblastes synoviaux, les iHDAC, TSA, NaBu et acide valproïque (VA), suppriment l’expression de la mPGES-1 ainsi que la production de la PGE2 induites par l’IL-1ß. En utilisant diverses approches expérimentales, nous avons montré que HDAC4 est impliquée dans l’induction de l’expression de la mPGES-1 par l’IL-1ß. HDAC4 exerce son action, via son activité déacétylase, en augmentant l’activité transcriptionnelle de Egr-1 (early growth factor 1), facteur de transcription principal de l’expression de la mPGES-1. L’ensemble de ces résultats suggère que les inhibiteurs des HDAC pourraient être utilisés dans le traitement de l’OA.