978 resultados para Elliott, Jack
Resumo:
O objetivo deste trabalho é comparar o método de estimação dos mínimos quadrados ponderados para ajuste de modelos ao semivariograma com o método de tentativa e erro, muito usado na prática, pela técnica de auto-validação "jack- knifing".
Resumo:
BACKGROUND The assessment of Health-Related Quality of Life (HRQoL) in hepatitis C (HCV) infected individuals continues to gain importance. However, rarely do reviews of this literature consider quantitative and qualitative accounts of HRQoL collectively, which only allows partial insight into the topic. This narrative review aims to address this gap in the literature. METHODS Literature searches were conducted using seven databases with two separate search strategies, and results assessed for eligibility using specific inclusion/exclusion criteria; a data extraction sheet was used to identify the dominant themes for each research paradigm which were then distilled to key findings to construct the narrative. RESULTS Quantitative investigation reveals a low HRQoL in individuals with HCV due to a complex multifactorial cause. During treatment for HCV, a further transient reduction is observed, followed by improvement if a sustained virological response is achieved. Qualitative data provide a recognisable voice to the everyday challenges experienced by individuals with HCV including insights into diagnosis and stigmatisation, contextualising how a reduced HRQoL is experienced day-to-day. Methodological limitations of these findings are then discussed. Much of the quantitative data has little relevance to current substance users as they are excluded from most trials, and appraisal of the qualitative literature reveals a marked difference in the lived experience of HCV infected current substance users and that of other HCV groups. CONCLUSION Concurrent analysis of quantitative and qualitative paradigms provides a deeper understanding of the true burden of HCV illness on HRQoL. Greater utilisation of qualitative research within international clinical guidelines is likely to be of benefit in identifying relevant HRQoL outcomes for substance users.
Resumo:
Mike J. Wilkinson, Luisa J. Elliott, Jo?l Allainguillaume, Michael W. Shaw, Carol Norris, Ruth Welters, Matthew Alexander, Jeremy Sweet, David C. Mason (2003). Hybridization between Brassica napus and B-rapa on a national scale in the United Kingdom, Science, 302 (5644), 457-459. RAE2008
Resumo:
Elliott, G. N., Worgan, H., Broadhurst, D. I., Draper, J. H., Scullion, J. (2007). Soil differentiation using fingerprint Fourier transform infrared spectroscopy, chemometrics and genetic algorithm-based feature selection. Soil Biology & Biochemistry, 39 (11), 2888-2896. Sponsorship: BBSRC / NERC RAE2008
Resumo:
The future of theology libraries is far from clear. Since the nineteenth century, theology libraries have evolved to support the work of theological education. This article briefly reviews the development of theology libraries in North America and examines the contextual changes impacting theology libraries today. Three significant factors that will shape theology libraries in the coming decade are collaborative models of pedagogy and scholarship, globalization and rapid changes in information technology, and changes in the nature of scholarly publishing including the digitization of information. A large body of research is available to assist those responsible for guiding the direction of theology libraries in the next decade, but there are significant gaps in what we know about the impact of technology on how people use information that must be filled in order to provide a solid foundation for planning.
Resumo:
Sermon preached at Boston University School of Theology during Wednesday Chapel on October 24, 2007
Resumo:
(adapted from the DSpace Procedures Manual developed by Kalamazoo College Digital Archive)
Resumo:
Paper presented at the Digital Humanities 2009 conference in College Park, Maryland.
Resumo:
This is a draft 2 of a discussion paper written for Boston University Libraries
Resumo:
A working paper written for Boston University Libraries to foster discussion about how to provide better support for BU faculty authors.
Resumo:
A working paper for discussion
Resumo:
Thin film dielectrics based on titanium, zirconium or hafnium oxides are being introduced to increase the permittivity of insulating layers in transistors for micro/nanoelectronics and memory devices. Atomic layer deposition (ALD) is the process of choice for fabricating these films, as it allows for high control of composition and thickness in thin, conformal films which can be deposited on substrates with high aspect-ratio features. The success of this method depends crucially on the chemical properties of the precursor molecules. A successful ALD precursor should be volatile, stable in the gas-phase, but reactive on the substrate and growing surface, leading to inert by-products. In recent years, many different ALD precursors for metal oxides have been developed, but many of them suffer from low thermal stability. Much promise is shown by group 4 metal precursors that contain cyclopentadienyl (Cp = C5H5-xRx) ligands. One of the main advantages of Cp precursors is their thermal stability. In this work ab initio calculations were carried out at the level of density functional theory (DFT) on a range of heteroleptic metallocenes [M(Cp)4-n(L)n], M = Hf/Zr/Ti, L = Me and OMe, in order to find mechanistic reasons for their observed behaviour during ALD. Based on optimized monomer structures, reactivity is analyzed with respect to ligand elimination. The order in which different ligands are eliminated during ALD follows their energetics which was in agreement with experimental measurements. Titanocene-derived precursors, TiCp*(OMe)3, do not yield TiO2 films in atomic layer deposition (ALD) with water, while Ti(OMe)4 does. DFT was used to model the ALD reaction sequence and find the reason for the difference in growth behaviour. Both precursors adsorb initially via hydrogen-bonding. The simulations reveal that the Cp* ligand of TiCp*(OMe)3 lowers the Lewis acidity of the Ti centre and prevents its coordination to surface O (densification) during both of the ALD pulses. Blocking this step hindered further ALD reactions and for that reason no ALD growth is observed from TiCp*(OMe)3 and water. The thermal stability in the gas phase of Ti, Zr and Hf precursors that contain cyclopentadienyl ligands was also considered. The reaction that was found using DFT is an intramolecular α-H transfer that produces an alkylidene complex. The analysis shows that thermal stabilities of complexes of the type MCp2(CH3)2 increase down group 4 (M = Ti, Zr and Hf) due to an increase in the HOMO-LUMO band gap of the reactants, which itself increases with the electrophilicity of the metal. The reverse reaction of α-hydrogen abstraction in ZrCp2Me2 is 1,2-addition reaction of a C-H bond to a Zr=C bond. The same mechanism is investigated to determine if it operates for 1,2 addition of the tBu C-H across Hf=N in a corresponding Hf dimer complex. The aim of this work is to understand orbital interactions, how bonds break and how new bonds form, and in what state hydrogen is transferred during the reaction. Calculations reveal two synchronous and concerted electron transfers within a four-membered cyclic transition state in the plane between the cyclopentadienyl rings, one π(M=X)-to-σ(M-C) involving metal d orbitals and the other σ(C-H)-to-σ(X-H) mediating the transfer of neutral H, where X = C or N. The reaction of the hafnium dimer complex with CO that was studied for the purpose of understanding C-H bond activation has another interesting application, namely the cleavage of an N-N bond and resulting N-C bond formation. Analysis of the orbital plots reveals repulsion between the occupied orbitals on CO and the N-N unit where CO approaches along the N-N axis. The repulsions along the N-N axis are minimized by instead forming an asymmetrical intermediate in which CO first coordinates to one Hf and then to N. This breaks the symmetry of the N-N unit and the resultant mixing of MOs allows σ(NN) to be polarized, localizing electrons on the more distant N. This allowed σ(CO) and π(CO) donation to N and back-donation of π*(Hf2N2) to CO. Improved understanding of the chemistry of metal complexes can be gained from atomic-scale modelling and this provides valuable information for the design of new ALD precursors. The information gained from the model decomposition pathway can be additionally used to understand the chemistry of molecules in the ALD process as well as in catalytic systems.
Resumo:
Atomic layer deposition (ALD) is now used in semiconductor fabrication lines to deposit nanometre-thin oxide films, and has thus enabled the introduction of high-permittivity dielectrics into the CMOS gate stack. With interest increasing in transistors based on high mobility substrates, such as GaAs, we are investigating the surface treatments that may improve the interface characteristics. We focus on incubation periods of ALD processes on III-V substrates. We have applied first principles Density Functional Theory (DFT) to investigate detailed chemistry of these early stages of growth, specifically substrate and ALD precursor interaction. We have modelled the ‘clean-up’ effect by which organometallic precursors: trimethylaluminium (TMA) or hafnium and titanium amides clean arsenic oxides off the GaAs surface before ALD growth of dielectric commences and similar effect on Si3N4 substrate. Our simulations show that ‘clean-up’ of an oxide film strongly depends on precursor ligand, its affinity to the oxide and the redox character of the oxide. The predominant pathway for a metalloid oxide such as arsenic oxide is reduction, producing volatile molecules or gettering oxygen from less reducible oxides. An alternative pathway is non-redox ligand exchange, which allows non-reducible oxides (e.g. SiO2) to be cleaned-up. First principles study shows also that alkylamides are more susceptible to decomposition rather than migration on the oxide surface. This improved understanding of the chemical principles underlying ‘clean-up’ allows us to rationalize and predict which precursors will perform the reaction. The comparison is made between selection of metal chlorides, methyls and alkylamides precursors.
Resumo:
This thesis is structured in the format of a three part Portfolio of Exploration to facilitate transformation in my ways of knowing to enhance an experienced business practitioner’s capabilities and effectiveness. A key factor in my ways of knowing, as opposed to what I know, is my exploration of context and assumptions. By interacting with my cultural, intellectual, economic, and social history, I seek to become critically aware of the biographical, historical, and cultural context of my beliefs and feelings about myself. This Portfolio is not exclusively for historians of economics or historians of ideas but also for those interested in becoming more aware of how these culturally assimilated frames of reference and bundles of assumptions that influence the way they perceive, think, decide, feel and interpret their experiences in order to operate more effectively in their professional and organisational lives. In the first part of my Portfolio, I outline and reflect upon my Portfolio’s overarching theory of adult development; the writings of Harvard’s Robert Kegan and Columbia University’s Jack Mezirow. The second part delves further into how meaning-making, the activity of how one organises and makes sense of the world and how meaning-making evolves to different levels of complexity. I explore how past experience and our interpretations of history influences our understandings since all perception is inevitably tinged with bias and entrenched ‘theory-laden’ assumptions. In my third part, I explore the 1933 inaugural University College Dublin Finlay Lecture delivered by economist John Maynard Keynes. My findings provide a new perspective and understanding of Keynes’s 1933 lecture by not solely reading or relying upon the text of the three contextualised essay versions of his lecture. The purpose and context of Keynes’s original longer lecture version was quite different to the three shorter essay versions published for the American, British and German audiences.
Resumo:
High-permittivity ("high-k") dielectric materials are used in the transistor gate stack in integrated circuits. As the thickness of silicon oxide dielectric reduces below 2 nm with continued downscaling, the leakage current because of tunnelling increases, leading to high power consumption and reduced device reliability. Hence, research concentrates on finding materials with high dielectric constant that can be easily integrated into a manufacturing process and show the desired properties as a thin film. Atomic layer deposition (ALD) is used practically to deposit high-k materials like HfO2, ZrO2, and Al2O3 as gate oxides. ALD is a technique for producing conformal layers of material with nanometer-scale thickness, used commercially in non-planar electronics and increasingly in other areas of science and technology. ALD is a type of chemical vapor deposition that depends on self-limiting surface chemistry. In ALD, gaseous precursors are allowed individually into the reactor chamber in alternating pulses. Between each pulse, inert gas is admitted to prevent gas phase reactions. This thesis provides a profound understanding of the ALD of oxides such as HfO2, showing how the chemistry affects the properties of the deposited film. Using multi-scale modelling of ALD, the kinetics of reactions at the growing surface is connected to experimental data. In this thesis, we use density functional theory (DFT) method to simulate more realistic models for the growth of HfO2 from Hf(N(CH3)2)4/H2O and HfCl4/H2O and for Al2O3 from Al(CH3)3/H2O.Three major breakthroughs are discovered. First, a new reaction pathway, ’multiple proton diffusion’, is proposed for the growth of HfO2 from Hf(N(CH3)2)4/H2O.1 As a second major breakthrough, a ’cooperative’ action between adsorbed precursors is shown to play an important role in ALD. By this we mean that previously-inert fragments can become reactive once sufficient molecules adsorb in their neighbourhood during either precursor pulse. As a third breakthrough, the ALD of HfO2 from Hf(N(CH3)2)4 and H2O is implemented for the first time into 3D on-lattice kinetic Monte-Carlo (KMC).2 In this integrated approach (DFT+KMC), retaining the accuracy of the atomistic model in the higher-scale model leads to remarkable breakthroughs in our understanding. The resulting atomistic model allows direct comparison with experimental techniques such as X-ray photoelectron spectroscopy and quartz crystal microbalance.