981 resultados para Egypt, Remote Sensing, GIS, Red Sea
Resumo:
We present a remote sensing observational method for the measurement of the spatio-temporal dynamics of ocean waves. Variational techniques are used to recover a coherent space-time reconstruction of oceanic sea states given stereo video imagery. The stereoscopic reconstruction problem is expressed in a variational optimization framework. There, we design an energy functional whose minimizer is the desired temporal sequence of wave heights. The functional combines photometric observations as well as spatial and temporal regularizers. A nested iterative scheme is devised to numerically solve, via 3-D multigrid methods, the system of partial differential equations resulting from the optimality condition of the energy functional. The output of our method is the coherent, simultaneous estimation of the wave surface height and radiance at multiple snapshots. We demonstrate our algorithm on real data collected off-shore. Statistical and spectral analysis are performed. Comparison with respect to an existing sequential method is analyzed.
Resumo:
Satellite image data have become an important source of information for monitoring vegetation and mapping land cover at several scales. Beside this, the distribution and phenology of vegetation is largely associated with climate, terrain characteristics and human activity. Various vegetation indices have been developed for qualitative and quantitative assessment of vegetation using remote spectral measurements. In particular, sensors with spectral bands in the red (RED) and near-infrared (NIR) lend themselves well to vegetation monitoring and based on them [(NIR - RED) / (NIR + RED)] Normalized Difference Vegetation Index (NDVI) has been widespread used. Given that the characteristics of spectral bands in RED and NIR vary distinctly from sensor to sensor, NDVI values based on data from different instruments will not be directly comparable. The spatial resolution also varies significantly between sensors, as well as within a given scene in the case of wide-angle and oblique sensors. As a result, NDVI values will vary according to combinations of the heterogeneity and scale of terrestrial surfaces and pixel footprint sizes. Therefore, the question arises as to the impact of differences in spectral and spatial resolutions on vegetation indices like the NDVI and their interpretation as a drought index. During 2012 three locations (at Salamanca, Granada and Córdoba) were selected and a periodic pasture monitoring and botanic composition were achieved. Daily precipitation, temperature and monthly soil water content were measurement as well as fresh and dry pasture weight. At the same time, remote sensing images were capture by DEIMOS-1 and MODIS of the chosen places. DEIMOS-1 is based on the concept Microsat-100 from Surrey. It is conceived for obtaining Earth images with a good enough resolution to study the terrestrial vegetation cover (20x20 m), although with a great range of visual field (600 km) in order to obtain those images with high temporal resolution and at a reduced cost. By contranst, MODIS images present a much lower spatial resolution (500x500 m). The aim of this study is to establish a comparison between two different sensors in their NDVI values at different spatial resolutions. Acknowledgements. This work was partially supported by ENESA under project P10 0220C-823. Funding provided by Spanish Ministerio de Ciencia e Innovación (MICINN) through project no. MTM2009-14621 and i-MATH No. CSD2006-00032 is greatly appreciated.
Resumo:
Los recientes desarrollos tecnológicos permiten la transición de la oceanografía observacional desde un concepto basado en buques a uno basado en sistemas autónomos en red. Este último, propone que la forma más eficiente y efectiva de observar el océano es con una red de plataformas autónomas distribuidas espacialmente y complementadas con sistemas de medición remota. Debido a su maniobrabilidad y autonomía, los planeadores submarinos están jugando un papel relevante en este concepto de observaciones en red. Los planeadores submarinos fueron específicamente diseñados para muestrear vastas zonas del océano. Estos son robots con forma de torpedo que hacen uso de su forma hidrodinámica, alas y cambios de flotabilidad para generar movimientos horizontales y verticales en la columna de agua. Un sensor que mide conductividad, temperatura y profundidad (CTD) constituye un equipamiento estándar en la plataforma. Esto se debe a que ciertas variables dinámicas del Océano se pueden derivar de la temperatura, profundidad y salinidad. Esta última se puede estimar a partir de las medidas de temperatura y conductividad. La integración de sensores CTD en planeadores submarinos no esta exenta de desafíos. Uno de ellos está relacionado con la precisión de los valores de salinidad derivados de las muestras de temperatura y conductividad. Específicamente, las estimaciones de salinidad están significativamente degradadas por el retardo térmico existente, entre la temperatura medida y la temperatura real dentro de la celda de conductividad del sensor. Esta deficiencia depende de las particularidades del flujo de entrada al sensor, su geometría y, también se ha postulado, del calor acumulado en las capas de aislamiento externo del sensor. Los efectos del retardo térmico se suelen mitigar mediante el control del flujo de entrada al sensor. Esto se obtiene generalmente mediante el bombeo de agua a través del sensor o manteniendo constante y conocida su velocidad. Aunque recientemente se han incorporado sistemas de bombeo en los CTDs a bordo de los planeadores submarinos, todavía existen plataformas equipadas con CTDs sin dichos sistemas. En estos casos, la estimación de la salinidad supone condiciones de flujo de entrada al sensor, razonablemente controladas e imperturbadas. Esta Tesis investiga el impacto, si existe, que la hidrodinámica de los planeadores submarinos pudiera tener en la eficiencia de los sensores CTD. Específicamente, se investiga primero la localización del sensor CTD (externo al fuselaje) relativa a la capa límite desarrollada a lo largo del cuerpo del planeador. Esto se lleva a cabo mediante la utilización de un modelo acoplado de fluido no viscoso con un modelo de capa límite implementado por el autor, así como mediante un programa comercial de dinámica de fluidos computacional (CFD). Los resultados indican, en ambos casos, que el sensor CTD se encuentra fuera de la capa límite, siendo las condiciones del flujo de entrada las mismas que las del flujo sin perturbar. Todavía, la velocidad del flujo de entrada al sensor CTD es la velocidad de la plataforma, la cual depende de su hidrodinámica. Por tal motivo, la investigación se ha extendido para averiguar el efecto que la velocidad de la plataforma tiene en la eficiencia del sensor CTD. Con este propósito, se ha desarrollado un modelo en elementos finitos del comportamiento hidrodinámico y térmico del flujo dentro del CTD. Los resultados numéricos indican que el retardo térmico, atribuidos originalmente a la acumulación de calor en la estructura del sensor, se debe fundamentalmente a la interacción del flujo que atraviesa la celda de conductividad con la geometría interna de la misma. Esta interacción es distinta a distintas velocidades del planeador submarino. Específicamente, a velocidades bajas del planeador (0.2 m/s), la mezcla del flujo entrante con las masas de agua remanentes en el interior de la celda, se ralentiza debido a la generación de remolinos. Se obtienen entonces desviaciones significantes entre la salinidad real y aquella estimada. En cambio, a velocidades más altas del planeador (0.4 m/s) los procesos de mezcla se incrementan debido a la turbulencia e inestabilidades. En consecuencia, la respuesta del sensor CTD es mas rápida y las estimaciones de la salinidad mas precisas que en el caso anterior. Para completar el trabajo, los resultados numéricos se han validado con pruebas experimentales. Específicamente, se ha construido un modelo a escala del sensor CTD para obtener la confirmación experimental de los modelos numéricos. Haciendo uso del principio de similaridad de la dinámica que gobierna los fluidos incompresibles, los experimentos se han realizado con flujos de aire. Esto simplifica significativamente la puesta experimental y facilita su realización en condiciones con medios limitados. Las pruebas experimentales han confirmado cualitativamente los resultados numéricos. Más aun, se sugiere en esta Tesis que la respuesta del sensor CTD mejoraría significativamente añadiendo un generador de turbulencia en localizaciones adecuadas al interno de la celda de conductividad. ABSTRACT Recent technological developments allow the transition of observational oceanography from a ship-based to a networking concept. The latter suggests that the most efficient and effective way to observe the Ocean is through a fleet of spatially distributed autonomous platforms complemented by remote sensing. Due to their maneuverability, autonomy and endurance at sea, underwater gliders are already playing a significant role in this networking observational approach. Underwater gliders were specifically designed to sample vast areas of the Ocean. These are robots with a torpedo shape that make use of their hydrodynamic shape, wings and buoyancy changes to induce horizontal and vertical motions through the water column. A sensor to measure the conductivity, temperature and depth (CTD) is a standard payload of this platform. This is because certain ocean dynamic variables can be derived from temperature, depth and salinity. The latter can be inferred from measurements of temperature and conductivity. Integrating CTD sensors in glider platforms is not exempted of challenges. One of them, concerns to the accuracy of the salinity values derived from the sampled conductivity and temperature. Specifically, salinity estimates are significantly degraded by the thermal lag response existing between the measured temperature and the real temperature inside the conductivity cell of the sensor. This deficiency depends on the particularities of the inflow to the sensor, its geometry and, it has also been hypothesized, on the heat accumulated by the sensor coating layers. The effects of thermal lag are usually mitigated by controlling the inflow conditions through the sensor. Controlling inflow conditions is usually achieved by pumping the water through the sensor or by keeping constant and known its diving speed. Although pumping systems have been recently implemented in CTD sensors on board gliders, there are still platforms with unpumped CTDs. In the latter case, salinity estimates rely on assuming reasonable controlled and unperturbed flow conditions at the CTD sensor. This Thesis investigates the impact, if any, that glider hydrodynamics may have on the performance of onboard CTDs. Specifically, the location of the CTD sensor (external to the hull) relative to the boundary layer developed along the glider fuselage, is first investigated. This is done, initially, by applying a coupled inviscid-boundary layer model developed by the author, and later by using a commercial software for computational fluid dynamics (CFD). Results indicate, in both cases, that the CTD sensor is out of the boundary layer, being its inflow conditions those of the free stream. Still, the inflow speed to the CTD sensor is the speed of the platform, which largely depends on its hydrodynamic setup. For this reason, the research has been further extended to investigate the effect of the platform speed on the performance of the CTD sensor. A finite element model of the hydrodynamic and thermal behavior of the flow inside the CTD sensor, is developed for this purpose. Numerical results suggest that the thermal lag effect is mostly due to the interaction of the flow through the conductivity cell and its geometry. This interaction is different at different speeds of the glider. Specifically, at low glider speeds (0.2 m/s), the mixing of recent and old waters inside the conductivity cell is slowed down by the generation of coherent eddy structures. Significant departures between real and estimated values of the salinity are found. Instead, mixing is enhanced by turbulence and instabilities for high glider speeds (0.4 m/s). As a result, the thermal response of the CTD sensor is faster and the salinity estimates more accurate than for the low speed case. For completeness, numerical results have been validated against model tests. Specifically, a scaled model of the CTD sensor was built to obtain experimental confirmation of the numerical results. Making use of the similarity principle of the dynamics governing incompressible fluids, experiments are carried out with air flows. This significantly simplifies the experimental setup and facilitates its realization in a limited resource condition. Model tests qualitatively confirm the numerical findings. Moreover, it is suggested in this Thesis that the response of the CTD sensor would be significantly improved by adding small turbulators at adequate locations inside the conductivity cell.
Resumo:
O aumento da inundação em áreas do baixo curso do rio Taquari, no Pantanal do estado do Mato Grosso do Sul, tem transformado a pecuária desta região numa atividade com baixa rentabilidade, à medida que extensas áreas de campo passaram a ser inundadas vários meses durante o ano a partir da década de 70. A pecuária realizada em campos naturais de regiões úmidas do Pantanal indica que há necessidade de se investigar metodologias apropriadas para avaliação de impacto ambiental, que abordem impactos diretos, indiretos, cumulativos e processos do meio físico que alteram, de maneira prejudicial, o meio ambiente. Supõe-se que a inundação na planície do rio Taquari esteja relacionada com a ocupação antrópica nas áreas de planalto da bacia do rio Taquari. O presente trabalho tem por objetivo avaliar os impactos ambientais na planície de inundação do baixo curso do Taquari, decorrentes da ocupação antrópica da bacia hidrográfica do rio Taquari em sua totalidade, considerando os impactos ambientais causados pela pecuária à medida que se configura como principal atividade econômica da bacia bem como os processos erosivos e de assoreamento no quadro atual do regime de inundações. As etapas de caracterização da área, de análise dos impactos e as propostas de ações mitigadoras, previstas num Estudo de Impacto Ambiental, foram aqui analisadas. Foram utilizadas informações sobre as características do meio físico, biótico e socioeconômico, selecionadas a partir do levantamento dos dados existentes com recorte efetuado para a bacia hidrográfica do rio Taquari. Na maior parte dos temas, este foi um processo de levantamento, ordenamento e recuperação de informações, na escala original de 1:250.000, do Plano de Conservação da Bacia do Alto Paraguai-PCBAP, gerenciado no SPRING. Foram também realizadas viagens de campo para a complementação dos dados e para o levantamento de atividades antrópicas com verificações \"in loco\" da ocorrência de impacto ambiental. A maioria dos dados socioeconômicos compilados para o presente trabalho teve por base os censos agropecuários e demográficos realizados pelo IBGE. Os resultados obtidos demonstram que os impactos ambientais decorrentes da pecuária no planalto interferem no regime de inundação na planície da bacia, o que só foi possível de ser identificado a partir de análises integradas em toda a bacia hidrográfica do rio Taquari. Verificou-se que os métodos de EIA são adequados para identificar os impactos diretos decorrentes da pecuária, mas não são adequados para identificar os processos e seus efeitos cumulativos na extensão da bacia hidrográfica do rio Taquari. Além disto, a abordagem da avaliação ambiental estratégica, como procedimento para análise ambiental em políticas, planos e programas, mostra-se adequada para as análises na BHRT à medida que está centralizada nos efeitos do ambiente sobre as necessidades e oportunidades de desenvolvimento. Contudo, somente a recuperação de danos ambientais, o controle das origens dos impactos no ambiente e um sistema de gestão consciente de seus compromissos podem levar, juntamente com a melhora dos procedimentos técnicos e administrativos para análises ambientais, à uma maior proximidade da sustentabilidade ambiental na BHRT.
Nesting In The Clouds: Evaluating And Predicting Sea Turtle Nesting Beach Parameters From Lidar Data
Resumo:
Humans' desire for knowledge regarding animal species and their interactions with the natural world have spurred centuries of studies. The relatively new development of remote sensing systems using satellite or aircraft-borne sensors has opened up a wide field of research, which unfortunately largely remains dependent on coarse-scale image spatial resolution, particularly for habitat modeling. For habitat-specialized species, such data may not be sufficient to successfully capture the nuances of their preferred areas. Of particular concern are those species for which topographic feature attributes are a main limiting factor for habitat use. Coarse spatial resolution data can smooth over details that may be essential for habitat characterization. Three studies focusing on sea turtle nesting beaches were completed to serve as an example of how topography can be a main deciding factor for certain species. Light Detection and Ranging (LiDAR) data were used to illustrate that fine spatial scale data can provide information not readily captured by either field work or coarser spatial scale sources. The variables extracted from the LiDAR data could successfully model nesting density for loggerhead (Caretta caretta), green (Chelonia mydas), and leatherback (Dermochelys coriacea) sea turtle species using morphological beach characteristics, highlight beach changes over time and their correlations with nesting success, and provide comparisons for nesting density models across large geographic areas. Comparisons between the LiDAR dataset and other digital elevation models (DEMs) confirmed that fine spatial scale data sources provide more similar habitat information than those with coarser spatial scales. Although these studies focused solely on sea turtles, the underlying principles are applicable for many other wildlife species whose range and behavior may be influenced by topographic features.
Resumo:
La aplicación de los Sistemas de Información Geográfica (SIG) se ha extendido en el mundo científico-técnico, donde se ha convertido en un instrumento de análisis y almacenamiento de información imprescindible. El uso de los SIG abarca casi cualquier aplicación en la que haya una componente espacial, como usos militares, aplicaciones en infraestructuras, planificación territorial, etc. En el medio marino se pueden aplicar para teledetección, cartografía digital, geoestadística, análisis y modelación espacial, Infraestructuras de Datos Espaciales (IDE), visores web, etc. En 1988, la Región de Murcia impulsó el proyecto de cartografía binómica del litoral murciano, siendo un instrumento que ha ido actualizándose hasta nuestros días. En comparación con otras regiones mediterráneas españolas, el litoral murciano es el tramo del litoral mediterráneo con la información cartográfica más completa y precisa, además del SIG marino más avanzado. Son numerosos los trabajos y aplicaciones en los que se ha utilizado como base la cartografía y los datos asociados, como la Red Natura 2000, ‘Programa de gestión integrada del litoral del Mar Menor y su zona de influencia’, caracterización ambiental para la propuesta de Reservas Marinas, diagnóstico medioambiental, etc.