921 resultados para Earth,Age of.
Resumo:
The aim of this study is to assess the experience of flow and its relationship with the personality traits and the age of the adolescents. For this purpose, 224 participants of both sexes were selected, aged 12-20 years, who were examined with various tools: Flow State in adolescents (Leibovich de Figueroa; Schmidt, 2013). This is a self-report technique of 28 items that assesses the Flow State, covering all the aspects theoretically listed as components in the optimal experience of enjoyment. And a self-report Being a teenager nowadays, which evaluates 33 pairs of opposite personality characteristics that represent the personality domains of the NEO-PI-R (Costa; McCrae, 1992. Costa; McCrae, 2005, Leibovich; Schmidt, 2005). Among the found results, it was observed that in the adolescents with high scores on the scale of Flow State, the main personality trait was extroversion. Also, the influence of age on optimal flow experience appears in the chosen activities
Resumo:
A comprehensive (mineralogical, geochronological, and geochemical) study of zircons from an eclogitized gabbronorite dike was carried out in order to identify reliable indicators (mineralogical and geochronological) of genesis of the zircons in their various populations and, correspondingly, ages of certain geological events (magmatic crystallization of the gabbroids, their eclogitization, and overprinted retrograde metamorphism). Three populations of zircons separated from two rock samples comprised xenogenic, magmatic (gabbroic), and metamorphic zircons, with the latter found exclusively in the sample of retrograded eclogitized gabbroids. Group I zircons are xenogenic and have a Meso- to Neoarchean age. Mineral inclusions in them (quartz, apatite, biotite, and chlorite) are atypical of gabbroids, and geochemistry of these zircons is very diverse. Group II zircons contain mineral inclusions of ortho- and clinopyroxene and are distinguished for their very high U, Th, Pb, and REE concentrations and Th/U ratios. These zircons formed during the late magmatic crystallization of the gabbroids at temperatures of 1150-1160°C, and their U-Pb age 2389±25 Ma corresponds to this process. Eclogite mineral assemblages crystallized shortly after the magmatic process, as follows from the fact that marginal portions of prismatic zircons contain clinopyroxene inclusions with elevated contents of the jadeite end-member. Group III zircons contain rare amphibole and biotite inclusions and have low Ti, Y, and REE concentrations, low Th/U ratios, high Hf concentrations, contain more HREE than LREE, and have U-Pb age 1911±9.5 Ma, which corresponds to age of overprinted amphibolite-facies metamorphism.
Resumo:
Studies of seafloor magnetic anomaly patterns suggest the presence of Jurassic oceanic crust in a large area in the western Pacific that includes the East Mariana, Nauru and Pigafetta Basins. Sampling of the igneous crust in this area by the Deep Sea Drilling Program (DSDP) and the Ocean Drilling Program (ODP) allows direct evaluation of the age and petrogenesis of this crust. ODP Leg 129 drilled a 51 m sequence of basalt pillows and massive flows in the central East Mariana Basin. 40Ar/39Ar ages determined in this study for two Leg 129 basalts average 114.6 +/- 3.2 Ma. This age is in agreement with the Albian-late Aptian paleontologic age of the overlying sediments, but is distinctively younger than the Jurassic age predicted by magnetic anomaly patterns in the basin. Compositionally, the East Mariana Basin basalts are uniformly low-K tholeiites that are depleted in highly incompatible elements compared to moderately incompatible ones, which is typical of mid-ocean ridge basalts (MORB) erupted near hotspots. The Sr, Nd and Pb isotopic compositions of the tholeiites (87Sr/86Sr init = 0.70360-0.70374; 143Nd/144Nd init = 0.512769-0.512790; 206Pb/204Pb meas = 18.355-18.386) also overlap with some Indian Ocean Ridge MORB, although they are distinct from the isotopic compositions of Jurassic basalts drilled in the Pigafetta Basin, the oldest Pacific MORB. The isotopic compositions of the East Mariana Basin tholeiites are also similar to those of intraplate basalts, and in particular, to the isotopic signature of basalts from the nearby Ontong Java and Manihiki Plateaus. The East Mariana Basin tholeiites also share many petrologic and isotopic characteristics with the oceanic basement drilled in the Nauru Basin at DSDP Site 462. In addition, the new 110.8 +/- 1.0 Ma 40Ar/39Ar age for two flows from the bottom of Site 462 in the Nauru Basin is indistinguishable from the age of the East Mariana Basin flows. Thus, while magnetic anomaly patterns predict that the igneous basement in the Nauru and East Mariana Basins is Jurassic in age, the geochemical and chronological results discussed here suggest that the basement formed during a Cretaceous rifting event within the Jurassic crust. This magmatic and tectonic event was created by the widespread volcanism responsible for the genesis of the large oceanic plateaus of the western Pacific.
Resumo:
The aim of this study is to assess the experience of flow and its relationship with the personality traits and the age of the adolescents. For this purpose, 224 participants of both sexes were selected, aged 12-20 years, who were examined with various tools: Flow State in adolescents (Leibovich de Figueroa; Schmidt, 2013). This is a self-report technique of 28 items that assesses the Flow State, covering all the aspects theoretically listed as components in the optimal experience of enjoyment. And a self-report Being a teenager nowadays, which evaluates 33 pairs of opposite personality characteristics that represent the personality domains of the NEO-PI-R (Costa; McCrae, 1992. Costa; McCrae, 2005, Leibovich; Schmidt, 2005). Among the found results, it was observed that in the adolescents with high scores on the scale of Flow State, the main personality trait was extroversion. Also, the influence of age on optimal flow experience appears in the chosen activities
Resumo:
Constraining the history of seawater (234U/238U) is important because this ratio is used to assess the validity of U/Th ages, and because it provides information about the past rate of physical weathering on the continents. This study makes use of U-rich slope sediments from the Bahamas in an attempt to reconstruct seawater (234U/238U) for the last 800 kyr. For the last 360 kyr, U/Th dating of these sediments provides ages and initial (234U/238U) values. Sixty-seven samples, largely from marine highstands, have initial (234U/238U) which scatter somewhat about the modern seawater value (~1.145) but neither this scatter nor the average value increases with age of sample. These data contrast with published coral data and suggest that seawater (234U/238U) has remained within 15? of the modern value for the last 360 kyr. This confirms the rejection of coral U/Th ages where the initial (234U/238U) is significantly different from modern seawater. Data from older highstands, dated with delta18O stratigraphy or by the presence of the Brunhes/Matuyama (B/M) reversal at 780 kyr, allow seawater (234U/238U) to be assessed prior to the range of the 230Th chronometer. Unfortunately, diagenetic scatter in the data between the B/M reversal and 360 kyr is rather large, probably relating to low U concentrations for these samples. But there is no indication of a trend in seawater (234U/238U) with age. High U samples from close to the B/M reversal show less diagenetic scatter and an initial (234U/238U) that averages 1.102. This lower value can be explained by lower seawater (234U/238U) at the time of the B/M reversal, or by progressive loss of 234U from the sediment by alpha-recoil. A simple box model is presented to illustrate the response of seawater (234U/238U) to variations in riverine input, such as might be caused by changes in continental weathering. Comparison of the Bahamas (234U/238U) data with model results indicates that riverine (234U/238U) has not varied by more than 65? for any 100 kyr period during the last 360 kyr. It also indicates that the ratio of physical to chemical weathering on the continents has not been higher than at present for any extended period during the last 800 kyr.
Resumo:
The aim of this study is to assess the experience of flow and its relationship with the personality traits and the age of the adolescents. For this purpose, 224 participants of both sexes were selected, aged 12-20 years, who were examined with various tools: Flow State in adolescents (Leibovich de Figueroa; Schmidt, 2013). This is a self-report technique of 28 items that assesses the Flow State, covering all the aspects theoretically listed as components in the optimal experience of enjoyment. And a self-report Being a teenager nowadays, which evaluates 33 pairs of opposite personality characteristics that represent the personality domains of the NEO-PI-R (Costa; McCrae, 1992. Costa; McCrae, 2005, Leibovich; Schmidt, 2005). Among the found results, it was observed that in the adolescents with high scores on the scale of Flow State, the main personality trait was extroversion. Also, the influence of age on optimal flow experience appears in the chosen activities
Resumo:
Tectonic structure and anomalous distributions of geophysical fields of the Sea of Okhotsk region are considered; the lack of reliable data on age of the lithosphere beneath basins of various origin in the Sea of Okhotsk is noted. Model calculations based on geological and geophysical data yielded 65 Ma (Cretaceous-Paleocene boundary) age for the Central Okhotsk rise underlain by the continental lithosphere. This estimate agrees with the age (the end of Cretaceous) derived from seismostratigraphic data. A comparative analysis of theoretical and measured heat flows in the Akademii Nauk Rise, underlain by the thinned continental crust, is performed. The analysis points to a higher (by 20%) value of the measured thermal background of the rise, which is consistent with high negative gradient of gravity anomalies in this area. Calculations yielded 36 Ma (Early Oligocene) age and lithosphere thickness of 50 km for the South Okhotsk depression, whose seafloor was formed by processes of back-arc spreading. The estimated age of the depression is supported by kinematic data on the region; the calculated thickness of the lithosphere coincides with the value estimated from data of magnetotelluric sounding here. This indicates that formation time (36 Ma) of the South Okhotsk depression was estimated correctly. Numerical modeling performed for determination of the basement age of rifting basins in the Sea of Okhotsk gave the following estimates: 18 Ma (Early Miocene) for the Deryugin Basin, 12 Ma (Middle Miocene) for the TINRO Basin, and 23 Ma (Late Oligocene) for the West Kamchatka Trough. These estimates agree with formation time (Oligocene-Quaternary) of the sedimentary cover in rifting basins of the Sea of Okhotsk derived from geological and geophysical data. Model temperature estimates are obtained for lithologic and stratigraphic boundaries of the sedimentary cover in the Deryugin and TINRO Basins and the West Kamchatka Trough; the temperature analysis indicates that the latter two structures are promising for oil and hydrocarbon gas generation; the West Kamchatka Trough possesses better reservoir properties compared to the TINRO and Deryugin Basins. The latter is promising for generation of hydrocarbon gas. Paleogeodynamic reconstructions of the Sea of Okhotsk region evolution are obtained for times of 90, 66, and 36 Ma on the base of kinematic, geomagnetic, structural, tectonic, geothermal, and other geological and geophysical data.
Resumo:
At Ocean Drilling Program (ODP) Site 1090 (subantarctic South Atlantic), benthic foraminiferal stable isotope data (from Cibicidoides and Oridorsalis) span the late Oligocene through early Miocene (~24-16 Ma) at a temporal resolution of ~5 ky. Over the same interval, a magnetic polarity stratigraphy can be unequivocally correlated to the geomagnetic polarity time scale (GPTS), thereby providing direct correlation of the isotope record to the GPTS. In an initial age model, we use the newly derived age of the Oligocene/Miocene (O/M) boundary of 23.0 Ma of Shackleton et al. (2000, doi:10.1130/0091-7613(2000)28<447:ACAFTO>2.0.CO;2), revised to the new astronomical calculation (La2003) of Laskar et al (2004, doi:10.1016/j.icarus.2004.04.005) to recalculate the spline ages of Cande and Kent (1995, doi:10.1029/94JB03098). We then tune the Site 1090 dekta18O record to obliquity using La2003. In this manner, we are able to refine the ages of polarity chrons C7n through C5Cn.1n. The new age model is consistent, within one obliquity cycle, with previously tuned ages for polarity chrons C7n through C6Bn from Shackleton et al. (2000) when rescaled to La2003. The results from Site 1090 provide independent evidence for the revised age of the Oligocene/Miocene boundary of 23.0 Ma. For early Miocene polarity chrons C6AAr through C5Cn, our obliquity-scale age model is the first to allow a direct calibration to the GPTS. The new ages are generally within one obliquity cycle of those obtained by rescaling the Cande and Kent (1995) interpolation using the new age of the O/M boundary (23.0 Ma) and the same middle Miocene control point (14.8 Ma) used by Cande and Kent (1995).
Resumo:
A high-resolution stratigraphy is essential toward deciphering climate variability in detail and understanding causality arguments of events in earth history. Because the highly dynamic middle to late Eocene provides a suitable testing ground for carbon cycle models for a waning warm world, an accurate time scale is needed to decode climate-driving mechanisms. Here we present new results from ODP Site 1260 (Leg 207) which covers a unique expanded middle Eocene section (magnetochrons C18r to C20r, late Lutetian to early Bartonian) of the tropical western Atlantic including the chron C19r transient hyperthermal event and the Middle Eocene Climate Optimum (MECO). To establish a detailed cyclostratigraphy we acquired a distinctive iron intensity records by XRF scanning Site 1260 cores. We revise the shipboard composite section, establish a cyclostratigraphy and use the exceptional eccentricity modulated precession cycles for orbital tuning. The new astrochronology revises the age of magnetic polarity chrons C19n to C20n, validates the position of very long eccentricity minima at 40.2 and 43.0 Ma in the orbital solutions, and extends the Astronomically Tuned Geological Time Scale back to 44 Ma. For the first time the new data provide clear evidence for an orbital pacing of the chron C19r event and a likely involvement of the very long eccentricity cycle contributing to the evolution of the MECO.
Resumo:
Basalts from Maud Rise, Weddell Sea, are vesicular and olivine-phyric. Major, trace, and rare earth element concentrations are similar to those of alkali basalts from ocean islands and seamounts. The rocks are low in MgO, Cr, Ni, and Sc, and high in TiO2, K2O, P2O5, Zr, and LREE contents. The abundance of "primary" biotite and apatite in the matrix indicates the melting of a hydrous mantle. Prevalence of olivine and absence of plagioclase in the rocks suggests that the volatile in the melt was an H2O-CO2 mixture, where H2O was <0.5. Mantle derived xenocrysts in the basalt include corroded orthopyroxene, chromite, apatite, and olivine. Olivine (Fo90) is too magnesian to be in equilibrium with the basalts, as they contain only 5-6 wt% MgO. Based on the presence of mantle xenocrysts, the high concentration of incompatible elements, the spatial and chemical affinity with other ocean island basalts from the area, and the relative age of the basalt (overlain by late Campanian sediments), it is suggested that Maud Rise was probably generated by hot-spot activity, possible during a ridge crest jump prior to 84 Ma (anomaly 34 time). Iddingsite, a complex intergrowth of montmorillonite and goethite, is the major alteration product of second generation olivine. It is suggested that iddingsite crystallized at low temperatures (<200°C) from an oxidized fluid during deuteric alteration. Vesicles are commonly filled by zeolites which have been replaced by K-feldspars.
Resumo:
Evidence for the Chesapeake Bay Crater as the source for New Jersey continental margin ejecta is provided by fine-grained tektites and coarse-grained unmelted ejecta. The Upper Eocene ejecta deposit, now demonstrated to be part of the North American strewn field, occurs on the New Jersey continental margin at Ocean Drilling Program (ODP) Sites 904 and 903. The mineralogy, major oxide composition of the ejecta materials, and biostratigraphic age of the enclosing sediments link the origin of these ejecta to the recently recognized Chesapeake Bay impact crater, located only 330 km away. Sediments associated with the ejecta provide information about the dynamics of impact events. The 35-cm-thick ejecta-bearing layer can be subdivided into three subunits that indicate a sequence of events. Bottom subunit III documents sediment failure and deposition of gravel-sized fragments, middle subunit II records deposition of abundant sand-sized ejecta by gravity settling, and upper subunit I contains a 12-cm-thick sedimentary deposit containing rare silt-sized tektites and evidence of waning currents. These events are interpreted by linking sediment deposition to seismic ground motion and subsequent tsunami waves triggered by both the Chesapeake Bay impact and slope failures.
Resumo:
During ODP Leg 107, the basement of the Tyrrhenian Sea was drilled at Site 650, located in the Marsili basin, and at Sites 651 and 655, both located in the Vavilov basin. In addition, a lava flow was drilled at Site 654 on the Sardinia rifted margin. Mineral and whole rock major and trace element chemistry, including rare earth element (REE) and Sr and Nd isotopic ratios, were determined in samples of these rocks. Site 654 lava was sampled within uppermost Pliocene postrift sediments. This lava is a basaltic andesite of intraplate affinity, and is analogous to some Plio-Pleistocene tholeiitic lavas from Sardinia. Site 650 basalts, drilled beneath 1.7-1.9-Ma-old basal sediment, are strongly altered and vesicular suggesting a rapid subsidence of the Marsili basin. Based on incompatible trace elements, these basalts show calc-alkaline affinity like some products of the Marsili Seamount and the Eolian arc. The basement of the two sites drilled within Vavilov basin shows contrasting petrologies. Site 655, located along the Gortani ridge in the western part of the basin, drilled a 116-m-thick sequence of basalt flows beneath 3.4-3.6-Ma-old basal sediments. These basalts are chemically relatively homogeneous and show affinity to transitional MORB. Four units consisting of slightly differentiated basaltic lavas, have been identified. Site 655 basalts are geochemically similar to the high Ti lavas from DSDP Leg 42, Site 373 (Vavilov Basin). The basement at Site 651, overlain by 40 m of metalliferous dolostone covered by fossiliferous sediments with an age of 2 Ma, consists of two basalt units separated by a dolerite-albitite intrusive body; serpentinized harzburgites were drilled for 30 m at the base of the hole. The two basalt units of Site 651 are distinct petrochemically, though both show incompatible elements affinity with high-K calc-alkaline/calc-alkaline magmas from Eolian arc. The cpx chemistry and high K/Na ratio of the lower unit lavas suggest a weak alkaline tendency of potassic lineage. Leg 107 basement rock data, together with data from DSDP Site 373 and from dredged samples, indicate that the deepest basins of the central Tyrrhenian Sea are underlain by a complex back-arc basin crust produced by magmas with incompatible element affinities to transitional MORB (Site 655 and DSDP Site 373), and to calc-alkaline and high-K calc-alkaline converging plate margin basalts (Sites 650 and 651). This petrogenetic complexity is in accordance with the back-arc setting of the Vavilov and Marsili basins. Other back-arc basin basalts, particularly those from ensialic basins such as the Bransfield Strait (Antarctica), show a comparable petrogenetic complexity (cf., Sounders and Tarney, 1984).
Resumo:
Phanerozoic granitoids are widespread in the Korean Peninsula and form a part of the East Asian Cordilleran-type granitoid belt extending from southeastern China to Far East Russia. Here we present SHRIMP zircon U-Pb ages and geochemical and Nd isotopic compositions of Late Paleozoic to Early Jurassic granitoid plutons in the northern Gyeongsang basin, southeastern Korea; namely the Jangsari, Yeongdeok, Yeonghae, and Satkatbong plutons. The granite and associated gabbroic rocks from the Jangsari pluton were coeval and respectively dated at 257.3 ± 2.0 Ma and 255.7 ± 1.4 Ma. This result represents the first finding of a Late Paleozoic pluton in South Korea. Three granite samples from the Yeongdeok pluton yielded a slightly younger age span ranging from 252.9 ± 2.5 Ma to 246.7 ± 2.1 Ma. Two diorite samples from the Yeonghae pluton gave much younger ages of 195.1 ± 1.9 Ma and 196.3 ± 1.6 Ma. An Early Jurassic age of 192.4 ± 1.6 Ma was also obtained from a diorite sample from the Satkatbong pluton. The mineral assemblage and Al2O3/(Na2O + K2O) versus Al2O3/(CaO + Na2O + K2O) relationship indicate that all the analyzed plutons are subduction zone granitoids. Enrichments in large-ion-lithophile-elements and depletions in high-field-strength-elements of these plutons are also concordant with geochemical characteristics typical for the subduction zone magma. The presence of Late Permian to Early Triassic arc system is in contrast with the conventional idea that the arc magmatism along the continental margin of the Korean Peninsula has commenced from Early Jurassic after the termination of Triassic collisional orogenesis. The epsilon-Nd(t) values of the granitoid plutons are consistently positive (2.4-4.6), suggesting that crustal residence time of the basement beneath the Gyeongsang basin is relatively short. Moreover, the reevaluation of previously-published data reveals that geochemical compositions of the Yeongdeok pluton are compatible with those of high-silica adakites; La/Yb = 37.5-114.6, Sr/Y = 138.2-214.0, SiO2 = 62.9-72.0 wt. %, Al2O3 = 15.5-17.0 wt. %, Sr = 562-1173 ppm, MgO = 0.4-1.6 wt. %, Y = 3-6 ppm, Yb = 0.18-0.45 ppm, and Eu/Eu* = 0.92-1.31. The occurrence of adakites in southeastern Korea, and presumably in the Hida belt of central-western Japan, is indicative of a hot subduction regime developing at least partly along the East Asian continental margin during the Permian-Triassic transition period.
Resumo:
The Ocean Drilling Program Leg 188 Site 1165 was drilled on the Wild Drift on the Continental Rise off Prydz Bay, East Antarctica to a total depth of 999.1 meters below seafloor (mbsf). It recovered an extensive suite of terrigenous and hemipelagic sediments of early Miocene to Pleistocene age. Of special interest in this study is the sediment column between 0 and 50 mbsf, which consists of a well-preserved section of Pliocene-Pleistocene-age sediments that was sampled at 10-cm intervals. Multiproxy study of this interval could show possible intervals of expansions of the ice-sheet across the continental shelves and express the climatic evolution in Antarctica, particularly during the 'middle' Pliocene warm period (3.15 to 2.85 Ma) which may provide an indication of how the Earth responds to a rise of its surface temperature. According to the existing age model, the upper 50 mbsf stratigraphic sequence of Site 1165 reaches back to ~4.9 Ma. Throughout this interval, the clay-mineral content is characterized by fluctuations of individual clay minerals, particularly smectite and chlorite. The smectite concentration varies mainly between 0% and 30%. Illite fluctuates less between 50% and 80%, and kaolinite varies mainly between 10% and 20%. Chlorite concentrations are mainly 0% to 10%. There is also a noticeable change in magnetic susceptibility at ~34 mbsf that is clearly indicated in the composition of the clay-mineral suite. At this level, smectite decreases and illite, kaolinite and chlorite show some variability. In particular, there is a slight but persistent increase in chlorite. The results from the Plio-Pleistocene transition, with evenly fluctuating smectite and illite contents and the gradually increasing chlorite content, may indicate cooler conditions compared to the mid-Pliocene conditions. Slight increase in illite content and decrease in smectite content towards Pleistocene supports the previous assumption. The results from the mid-Pliocene with the increasing smectite content and decreasing illite content may indicate warmer and possibly interglacial conditions.
Resumo:
The 106 m long composite profile from site 2 of ICDP expedition 5022 (PASADO) at Laguna Potrok Aike documents a distinct change in sedimentation patterns from pelagic sediments at the top to dominating mass movement deposits at its base. The main lithological units correspond to the Holocene, to the Lateglacial and to the last glacial period and can be interpreted as the result of distinct environmental variations. Overflow conditions might have been achieved during the last glacial period, while signs of desiccation are absent in the studied sediment record. Altogether, 58 radiocarbon dates were used to establish a consistent age-depth model by applying the mixed-effect regression procedure which results in a basal age of 51.2 cal. ka BP. Radiocarbon dates show a considerable increase in scatter with depth which is related to the high amount of reworking. Validation of the obtained chronology was achieved with geomagnetic relative paleointensity data and tephra correlation.