911 resultados para ENGINEERING ANALYSIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

According to the PMBOK (Project Management Body of Knowledge), project management is “the application of knowledge, skills, tools, and techniques to project activities to meet the project requirements” [1]. Project Management has proven to be one of the most important disciplines at the moment of determining the success of any project [2][3][4]. Given that many of the activities covered by this discipline can be said that are “horizontal” for any kind of domain, the importance of acknowledge the concepts and practices becomes even more obvious. The specific case of the projects that fall in the domain of Software Engineering are not the exception about the great influence of Project Management for their success. The critical role that this discipline plays in the industry has come to numbers. A report by McKinsey & Co [4] shows that the establishment of programs for the teaching of critical skills of project management can improve the performance of the project in time and costs. As an example of the above, the reports exposes: “One defense organization used these programs to train several waves of project managers and leaders who together administered a portfolio of more than 1,000 capital projects ranging in Project management size from $100,000 to $500 million. Managers who successfully completed the training were able to cut costs on most projects by between 20 and 35 percent. Over time, the organization expects savings of about 15 percent of its entire baseline spending”. In a white paper by the PMI (Project Management Institute) about the value of project management [5], it is stated that: “Leading organizations across sectors and geographic borders have been steadily embracing project management as a way to control spending and improve project results”. According to the research made by the PMI for the paper, after the economical crisis “Executives discovered that adhering to project management methods and strategies reduced risks, cut costs and improved success rates—all vital to surviving the economic crisis”. In every elite company, a proper execution of the project management discipline has become a must. Several members of the software industry have putted effort into achieving ways of assuring high quality results from projects; many standards, best practices, methodologies and other resources have been produced by experts from different fields of expertise. In the industry and the academic community, there is a continuous research on how to teach better software engineering together with project management [4][6]. For the general practices of Project Management the PMI produced a guide of the required knowledge that any project manager should have in their toolbox to lead any kind of project, this guide is called the PMBOK. On the side of best practices 10 and required knowledge for the Software Engineering discipline, the IEEE (Institute of Electrical and Electronics Engineers) developed the SWEBOK (Software Engineering Body of Knowledge) in collaboration with software industry experts and academic researchers, introducing into the guide many of the needed knowledge for a 5-year expertise software engineer [7]. The SWEBOK also covers management from the perspective of a software project. This thesis is developed to provide guidance to practitioners and members of the academic community about project management applied to software engineering. The way used in this thesis to get useful information for practitioners is to take an industry-approved guide for software engineering professionals such as the SWEBOK, and compare the content to what is found in the PMBOK. After comparing the contents of the SWEBOK and the PMBOK, what is found missing in the SWEBOK is used to give recommendations on how to enrich project management skills for a software engineering professional. Recommendations for members of the academic community on the other hand, are given taking into account the GSwE2009 (Graduated Software Engineering 2009) standard [8]. GSwE2009 is often used as a main reference for software engineering master programs [9]. The standard is mostly based on the content of the SWEBOK, plus some contents that are considered to reinforce the education of software engineering. Given the similarities between the SWEBOK and the GSwE2009, the results of comparing SWEBOK and PMBOK are also considered valid to enrich what the GSwE2009 proposes. So in the end the recommendations for practitioners end up being also useful for the academic community and their strategies to teach project management in the context of software engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is devoted to the numerical analysis of bidimensional bonded lap joints. For this purpose, the stress singularities occurring at the intersections of the adherend-adhesive interfaces with the free edges are first investigated and a method for computing both the order and the intensity factor of these singularities is described briefly. After that, a simplified model, in which the adhesive domain is reduced to a line, is derived by using an asymptotic expansion method. Then, assuming that the assembly debonding is produced by a macro-crack propagation in the adhesive, the associated energy release rate is computed. Finally, a homogenization technique is used in order to take into account a preliminary adhesive damage consisting of periodic micro-cracks. Some numerical results are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a study in which the relationship between basic subjects (Mathematics and Physics) and applied engineering subjects (related to Machinery, Electrical Engineering, Topography and Buildings) in higher engineering education curricula is evaluated. The analysis has been conducted using the academic records of 206 students for five years. Furthermore, 34 surveys and personal interviews were conducted to analyze the connections between the contents taught in each subject and to identify student perceptions of the correlation with other subjects or disciplines. At the same time, the content of the different subjects have been analyzed to verify the relationship among the disciplines.Aproper coordination among subjects will allow students to relate and interconnect topics of different subjects, even with the ones learnt in previous courses, while also helping to reduce dropout rates and student failures in successfully accomplishing the different courses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study analyses the differences between two calculation models for guardrails on building sites that use wooden boards and tubular steel posts. Wood was considered an isotropic material in one model and an orthotropic material in a second model. The elastic constants of the wood were obtained with ultrasound. Frequencies and vibration modes were obtained for both models through linear analysis using the finite element method. The two models were experimentally calibrated through operational modal analysis. The results obtained show that for the three types of wood under analysis, the model which considered them as an orthotropic material fitted the experimental results better than the model which considered them as an isotropic material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At present, engineering problems required quite a sophisticated calculation means. However, analytical models still can prove to be a useful tool for engineers and scientists when dealing with complex physical phenomena. The mathematical models developed to analyze three different engineering problems: photovoltaic devices analysis; cup anemometer performance; and high-speed train pressure wave effects in tunnels are described. In all cases, the results are quite accurate when compared to testing measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

En el campo de la fusión nuclear y desarrollándose en paralelo a ITER (International Thermonuclear Experimental Reactor), el proyecto IFMIF (International Fusion Material Irradiation Facility) se enmarca dentro de las actividades complementarias encaminadas a solucionar las barreras tecnológicas que aún plantea la fusión. En concreto IFMIF es una instalación de irradiación cuya misión es caracterizar materiales resistentes a condiciones extremas como las esperadas en los futuros reactores de fusión como DEMO (DEMOnstration power plant). Consiste de dos aceleradores de deuterones que proporcionan un haz de 125 mA y 40 MeV cada uno, que al colisionar con un blanco de litio producen un flujo neutrónico intenso (1017 neutrones/s) con un espectro similar al de los neutrones de fusión [1], [2]. Dicho flujo neutrónico es empleado para irradiar los diferentes materiales candidatos a ser empleados en reactores de fusión, y las muestras son posteriormente examinadas en la llamada instalación de post-irradiación. Como primer paso en tan ambicioso proyecto, una fase de validación y diseño llamada IFMIFEVEDA (Engineering Validation and Engineering Design Activities) se encuentra actualmente en desarrollo. Una de las actividades contempladas en esta fase es la construcción y operación de una acelarador prototipo llamado LIPAc (Linear IFMIF Prototype Accelerator). Se trata de un acelerador de deuterones de alta intensidad idéntico a la parte de baja energía de los aceleradores de IFMIF. Los componentes del LIPAc, que será instalado en Japón, son suministrados por diferentes países europeos. El acelerador proporcionará un haz continuo de deuterones de 9 MeV con una potencia de 1.125 MW que tras ser caracterizado con diversos instrumentos deberá pararse de forma segura. Para ello se requiere un sistema denominado bloque de parada (Beam Dump en inglés) que absorba la energía del haz y la transfiera a un sumidero de calor. España tiene el compromiso de suministrar este componente y CIEMAT (Centro de Investigaciones Energéticas Medioambientales y Tecnológicas) es responsable de dicha tarea. La pieza central del bloque de parada, donde se para el haz de iones, es un cono de cobre con un ángulo de 3.5o, 2.5 m de longitud y 5 mm de espesor. Dicha pieza está refrigerada por agua que fluye en su superficie externa por el canal que se forma entre el cono de cobre y otra pieza concéntrica con éste. Este es el marco en que se desarrolla la presente tesis, cuyo objeto es el diseño del sistema de refrigeración del bloque de parada del LIPAc. El diseño se ha realizado utilizando un modelo simplificado unidimensional. Se han obtenido los parámetros del agua (presión, caudal, pérdida de carga) y la geometría requerida en el canal de refrigeración (anchura, rugosidad) para garantizar la correcta refrigeración del bloque de parada. Se ha comprobado que el diseño permite variaciones del haz respecto a la situación nominal siendo el flujo crítico calorífico al menos 2 veces superior al nominal. Se han realizado asimismo simulaciones fluidodinámicas 3D con ANSYS-CFX en aquellas zonas del canal de refrigeración que lo requieren. El bloque de parada se activará como consecuencia de la interacción del haz de partículas lo que impide cualquier cambio o reparación una vez comenzada la operación del acelerador. Por ello el diseño ha de ser muy robusto y todas las hipótesis utilizadas en la realización de éste deben ser cuidadosamente comprobadas. Gran parte del esfuerzo de la tesis se centra en la estimación del coeficiente de transferencia de calor que es determinante en los resultados obtenidos, y que se emplea además como condición de contorno en los cálculos mecánicos. Para ello por un lado se han buscado correlaciones cuyo rango de aplicabilidad sea adecuado para las condiciones del bloque de parada (canal anular, diferencias de temperatura agua-pared de decenas de grados). En un segundo paso se han comparado los coeficientes de película obtenidos a partir de la correlación seleccionada (Petukhov-Gnielinski) con los que se deducen de simulaciones fluidodinámicas, obteniendo resultados satisfactorios. Por último se ha realizado una validación experimental utilizando un prototipo y un circuito hidráulico que proporciona un flujo de agua con los parámetros requeridos en el bloque de parada. Tras varios intentos y mejoras en el experimento se han obtenido los coeficientes de película para distintos caudales y potencias de calentamiento. Teniendo en cuenta la incertidumbre de las medidas, los valores experimentales concuerdan razonablemente bien (en el rango de 15%) con los deducidos de las correlaciones. Por motivos radiológicos es necesario controlar la calidad del agua de refrigeración y minimizar la corrosión del cobre. Tras un estudio bibliográfico se identificaron los parámetros del agua más adecuados (conductividad, pH y concentración de oxígeno disuelto). Como parte de la tesis se ha realizado asimismo un estudio de la corrosión del circuito de refrigeración del bloque de parada con el doble fin de determinar si puede poner en riesgo la integridad del componente, y de obtener una estimación de la velocidad de corrosión para dimensionar el sistema de purificación del agua. Se ha utilizado el código TRACT (TRansport and ACTivation code) adaptándalo al caso del bloque de parada, para lo cual se trabajó con el responsable (Panos Karditsas) del código en Culham (UKAEA). Los resultados confirman que la corrosión del cobre en las condiciones seleccionadas no supone un problema. La Tesis se encuentra estructurada de la siguiente manera: En el primer capítulo se realiza una introducción de los proyectos IFMIF y LIPAc dentro de los cuales se enmarca esta Tesis. Además se describe el bloque de parada, siendo el diseño del sistema de rerigeración de éste el principal objetivo de la Tesis. En el segundo y tercer capítulo se realiza un resumen de la base teórica así como de las diferentes herramientas empleadas en el diseño del sistema de refrigeración. El capítulo cuarto presenta los resultados del relativos al sistema de refrigeración. Tanto los obtenidos del estudio unidimensional, como los obtenidos de las simulaciones fluidodinámicas 3D mediante el empleo del código ANSYS-CFX. En el quinto capítulo se presentan los resultados referentes al análisis de corrosión del circuito de refrigeración del bloque de parada. El capítulo seis se centra en la descripción del montaje experimental para la obtención de los valores de pérdida de carga y coeficiente de transferencia del calor. Asimismo se presentan los resultados obtenidos en dichos experimentos. Finalmente encontramos un capítulo de apéndices en el que se describen una serie de experimentos llevados a cabo como pasos intermedios en la obtención del resultado experimental del coeficiente de película. También se presenta el código informático empleado para el análisis unidimensional del sistema de refrigeración del bloque de parada llamado CHICA (Cooling and Heating Interaction and Corrosion Analysis). ABSTRACT In the nuclear fusion field running in parallel to ITER (International Thermonuclear Experimental Reactor) as one of the complementary activities headed towards solving the technological barriers, IFMIF (International Fusion Material Irradiation Facility) project aims to provide an irradiation facility to qualify advanced materials resistant to extreme conditions like the ones expected in future fusion reactors like DEMO (DEMOnstration Power Plant). IFMIF consists of two constant wave deuteron accelerators delivering a 125 mA and 40 MeV beam each that will collide on a lithium target producing an intense neutron fluence (1017 neutrons/s) with a similar spectra to that of fusion neutrons [1], [2]. This neutron flux is employed to irradiate the different material candidates to be employed in the future fusion reactors, and the samples examined after irradiation at the so called post-irradiative facilities. As a first step in such an ambitious project, an engineering validation and engineering design activity phase called IFMIF-EVEDA (Engineering Validation and Engineering Design Activities) is presently going on. One of the activities consists on the construction and operation of an accelerator prototype named LIPAc (Linear IFMIF Prototype Accelerator). It is a high intensity deuteron accelerator identical to the low energy part of the IFMIF accelerators. The LIPAc components, which will be installed in Japan, are delivered by different european countries. The accelerator supplies a 9 MeV constant wave beam of deuterons with a power of 1.125 MW, which after being characterized by different instruments has to be stopped safely. For such task a beam dump to absorb the beam energy and take it to a heat sink is needed. Spain has the compromise of delivering such device and CIEMAT (Centro de Investigaciones Energéticas Medioambientales y Tecnológicas) is responsible for such task. The central piece of the beam dump, where the ion beam is stopped, is a copper cone with an angle of 3.5o, 2.5 m long and 5 mm width. This part is cooled by water flowing on its external surface through the channel formed between the copper cone and a concentric piece with the latter. The thesis is developed in this realm, and its objective is designing the LIPAc beam dump cooling system. The design has been performed employing a simplified one dimensional model. The water parameters (pressure, flow, pressure loss) and the required annular channel geometry (width, rugoisty) have been obtained guaranteeing the correct cooling of the beam dump. It has been checked that the cooling design allows variations of the the beam with respect to the nominal position, being the CHF (Critical Heat Flux) at least twice times higher than the nominal deposited heat flux. 3D fluid dynamic simulations employing ANSYS-CFX code in the beam dump cooling channel sections which require a more thorough study have also been performed. The beam dump will activateasaconsequenceofthe deuteron beam interaction, making impossible any change or maintenance task once the accelerator operation has started. Hence the design has to be very robust and all the hypotheses employed in the design mustbecarefully checked. Most of the work in the thesis is concentrated in estimating the heat transfer coefficient which is decisive in the obtained results, and is also employed as boundary condition in the mechanical analysis. For such task, correlations which applicability range is the adequate for the beam dump conditions (annular channel, water-surface temperature differences of tens of degrees) have been compiled. In a second step the heat transfer coefficients obtained from the selected correlation (Petukhov- Gnielinski) have been compared with the ones deduced from the 3D fluid dynamic simulations, obtaining satisfactory results. Finally an experimental validation has been performed employing a prototype and a hydraulic circuit that supplies a flow with the requested parameters in the beam dump. After several tries and improvements in the experiment, the heat transfer coefficients for different flows and heating powers have been obtained. Considering the uncertainty in the measurements the experimental values agree reasonably well (in the order of 15%) with the ones obtained from the correlations. Due to radiological reasons the quality of the cooling water must be controlled, hence minimizing the copper corrosion. After performing a bibligraphic study the most adequate water parameters were identified (conductivity, pH and dissolved oxygen concentration). As part of this thesis a corrosion study of the beam dump cooling circuit has been performed with the double aim of determining if corrosion can pose a risk for the copper beam dump , and obtaining an estimation of the corrosion velocitytodimension the water purification system. TRACT code(TRansport and ACTivation) has been employed for such study adapting the code for the beam dump case. For such study a collaboration with the code responsible (Panos Karditsas) at Culham (UKAEA) was established. The work developed in this thesis has supposed the publication of three articles in JCR journals (”Journal of Nuclear Materials” y ”Fusion Engineering and Design”), as well as presentations in more than four conferences and relevant meetings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, a model for the determination of displacements, strains, and stresses of a submarine pipeline during its construction is presented. Typically, polyethylene outfall pipelines are the ones treated by this model. The process is carried out from an initial floating situation to the final laying position on the seabed. The following control variables are considered in the laying process: the axial load in the pipe, the flooded inner length, and the distance of the control barge from the coast. External loads such as self-weight, dead loads, and forces due to currents and small waves are also taken into account.This paper describes both the conceptual framework for the proposed model and its practical application in a real engineering situation. The authors also consider how the model might be used as a tool to study how sensitive the behavior of the pipeline is to small changes in the values of the control variables. A detailed description of the actions is considered, especially the ones related to the marine environment such as buoyancy, current, and sea waves. The structural behavior of the pipeline is simulated in the framework of a geometrically nonlinear dynamic analysis. The pipeline is assumed to be a two-dimensional Navier_Bernoulli beam. In the nonlinear analysis an updated Lagrangian formulation is used, and special care is taken regarding the numerical aspects of sea bed contact, follower forces due to external water pressures, and dynamic actions. The paper concludes by describing the implementation of the proposed techniques, using the ANSYS computer program with a number of subroutines developed by the authors. This implementation permits simulation of the two-dimensional structural pipe behavior of the whole construction process. A sensitivity analysis of the bending moments, axial forces, and stresses for different values of the control variables is carried out. Using the techniques described, the engineer may optimize the construction steps in the pipe laying process

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Helicopters are one of the most important tactical elements in maritime operations. The necessity for an improvement in the conditions in which the landing and take-off operations are carried out leads to the study of the flow that separates from the ship?s superstructure over the flight deck. To investigate this flow a series of wind tunnel experiments have been performed by testing a sub-scale model of a generic frigate. Measurements of the flow?s velocity have been taken by means of Laser Doppler Anemometry (LDA) in five points that simulate the last path of the landing trajectory. The data obtained in these experiments is manipulated in a frequency analysis where the corresponding spectra are calculated. Onboard measurements from an actual full scale frigate are analyzed and compared with the wind tunnel results. Conclusions obtained consist of a series of illustrative values of turbulent energy frequency ranges which can be valuable for any study in this field. The comparison shows a clear similarity between both experiments, reasserting the wind tunnel measurements and its reliability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The advancement of science and engineering projects is brewing major changes in the various phases of a project. These changes have produced more rigorous aspects of project management that tracks the research fronts of engineering and project management becomes key. However, research in engineering and project management in Spanish is hindered by access to information to enable the person concerned to ascertain the most recent and current research, limiting the exchange of information and strengthening research networks in this field interest with great implications in business, industry and scientific issues. Therefore, the article aims to present the state of the art of engineering research and project management in Spanish, using the analysis of scientific domains and network analysis of the research literature to identify and analyze relationships between authors and documents that establish the base and research fronts topic under study. The results also provide statistics on the contribution of international research in Spanish and scientific collaboration networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work aims to contribute to a further understanding of the fundamentals of crystallographic slip and grain boundary sliding in the γ-TiAl Ti–45Al–2Nb–2Mn (at%)–0.8 vol%TiB2 intermetallic alloy, by means of in situ high-temperature tensile testing combined with electron backscatter diffraction (EBSD). Several microstructures, containing different fractions and sizes of lamellar colonies and equiaxed γ-grains, were fabricated by either centrifugal casting or powder metallurgy, followed by heat treatment at 1300 °C and furnace cooling. in situ tensile and tensile-creep experiments were performed in a scanning electron microscope (SEM) at temperatures ranging from 580 °C to 700 °C. EBSD was carried out in selected regions before and after straining. Our results suggest that, during constant strain rate tests, true twin γ/γ interfaces are the weakest barriers to dislocations and, thus, that the relevant length scale might be influenced by the distance between non-true twin boundaries. Under creep conditions both grain/colony boundary sliding (G/CBS) and crystallographic slip are observed to contribute to deformation. The incidence of boundary sliding is particularly high in γ grains of duplex microstructures. The slip activity during creep deformation in different microstructures was evaluated by trace analysis. Special emphasis was placed in distinguishing the compliance of different slip events with the Schmid law with respect to the applied stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an assessment analysis of damage domains of the 30 MWth prototype High-Temperature Engineering Test Reactor (HTTR) operated by the Japan Atomic Energy Agency (JAEA). For this purpose, an in-house deterministic risk assessment computational tool was developed based on the Theory of Stimulated Dynamics (TSD). To illustrate the methodology and applicability of the developed modelling approach, assessment results of a control rod (CR) withdrawal accident during subcritical conditions are presented and compared with those obtained by the JAEA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The new reactor concepts proposed in the Generation IV International Forum (GIF) are conceived to improve the use of natural resources, reduce the amount of high-level radioactive waste and excel in their reliability and safe operation. Among these novel designs sodium fast reactors (SFRs) stand out due to their technological feasibility as demonstrated in several countries during the last decades. As part of the contribution of EURATOM to GIF the CP-ESFR is a collaborative project with the objective, among others, to perform extensive analysis on safety issues involving renewed SFR demonstrator designs. The verification of computational tools able to simulate the plant behaviour under postulated accidental conditions by code-to-code comparison was identified as a key point to ensure reactor safety. In this line, several organizations employed coupled neutronic and thermal-hydraulic system codes able to simulate complex and specific phenomena involving multi-physics studies adapted to this particular fast reactor technology. In the “Introduction” of this paper the framework of this study is discussed, the second section describes the envisaged plant design and the commonly agreed upon modelling guidelines. The third section presents a comparative analysis of the calculations performed by each organisation applying their models and codes to a common agreed transient with the objective to harmonize the models as well as validating the implementation of all relevant physical phenomena in the different system codes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The new reactor concepts proposed in the Generation IV International Forum require the development and validation of computational tools able to assess their safety performance. In the first part of this paper the models of the ESFR design developed by several organisations in the framework of the CP-ESFR project were presented and their reliability validated via a benchmarking exercise. This second part of the paper includes the application of those tools for the analysis of design basis accident (DBC) scenarios of the reference design. Further, this paper also introduces the main features of the core optimisation process carried out within the project with the objective to enhance the core safety performance through the reduction of the positive coolant density reactivity effect. The influence of this optimised core design on the reactor safety performance during the previously analysed transients is also discussed. The conclusion provides an overview of the work performed by the partners involved in the project towards the development and enhancement of computational tools specifically tailored to the evaluation of the safety performance of the Generation IV innovative nuclear reactor designs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Basic engineering skills are not the only key to professional development, particularly as engineering problems are everyday more and more complex and multifaceted, hence requiring the implementation of larger multidisciplinary teams, in many cases working in an international context and in a continuously evolving environment. Therefore other outcomes, sometimes referred to as professional skills, are also necessary for our students, as most universities are already aware. In this study we try to methodically analyze the main strategies for the promotion of professional skills, mainly linked to actuations which directly affect students or teachers (and teaching methodologies) and which take advantage of the environment and available resources. From an initial list of 51 strategies (in essence aimed at promotion of different drivers of change, linked to students, teachers, environment and resources), we focus on the 11 drivers of change considered more important after an initial evaluation. Subsequently, a systematic analysis of the typical problems linked to these main drivers of change, enables us to find and formulate 12 major and usually repeated and unsolved problems. After selecting these typical problems, we put forward 25 different solutions, for short-term actuation, and discuss their effects, while bearing in mind our team’s experience, together with the information from the studies carried out by numerous teaching staff from other universities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between structural controllability and observability of complex systems is studied. Algebraic and graph theoretic tools are combined to prove the extent of some controller/observer duality results. Two types of control design problems are addressed and some fundamental theoretical results are provided. In addition new algorithms are presented to compute optimal solutions for monitoring large scale real networks.