925 resultados para ELECTRONEGATIVE-LDL
Resumo:
OBJECTIVE: This study developed percentile curves for anthropometric (waist circumference) and cardiovascular (lipid profile) risk factors for US children and adolescents. STUDY DESIGN: A representative sample of US children and adolescents from the National Health and Nutrition Examination Survey from 1988 to 1994 (NHANES III) and the current national series (NHANES 1999-2006) were combined. Percentile curves were constructed, nationally weighted, and smoothed using the Lambda, Mu, and Sigma method. The percentile curves included age- and sex-specific percentile values that correspond with and transition into the adult abnormal cut-off values for each of these anthropometric and cardiovascular components. To increase the sample size, a second series of percentile curves was also created from the combination of the 2 NHANES databases, along with cross-sectional data from the Bogalusa Heart Study, the Muscatine Study, the Fels Longitudinal Study and the Princeton Lipid Research Clinics Study. RESULTS: These analyses resulted in a series of growth curves for waist circumference, total cholesterol, LDL cholesterol, triglycerides, and HDL cholesterol from a combination of pediatric data sets. The cut-off for abnormal waist circumference in adult males (102 cm) was equivalent to the 94(th) percentile line in 18-year-olds, and the cut-off in adult females (88 cm) was equivalent to the 84(th) percentile line in 18-year-olds. Triglycerides were found to have a bimodal pattern among females, with an initial peak at age 11 and a second at age 20; the curve for males increased steadily with age. The HDL curve for females was relatively flat, but the male curve declined starting at age 9 years. Similar curves for total and LDL cholesterol were constructed for both males and females. When data from the additional child studies were added to the national data, there was little difference in their patterns or rates of change from year to year. CONCLUSIONS: These curves represent waist and lipid percentiles for US children and adolescents, with identification of values that transition to adult abnormalities. They could be used conditionally for both epidemiological and possibly clinical applications, although they need to be validated against longitudinal data.
Resumo:
Hypertension is a known risk factor for cardiovascular disease. Hypertensive individuals show exaggerated norepinephrine (NE) reactivity to stress. Norepinephrine is a known lipolytic factor. It is unclear if, in hypertensive individuals, stress-induced increases in NE are linked with the elevations in stress-induced circulating lipid levels. Such a mechanism could have implications for atherosclerotic plaque formation. In a cross-sectional, quasi-experimentally controlled study, 22 hypertensive and 23 normotensive men (mean +/- SEM, 45 +/- 3 years) underwent an acute standardized psychosocial stress task combining public speaking and mental arithmetic in front of an audience. We measured plasma NE and the plasma lipid profile (total cholesterol [TC], low-density-lipoprotein cholesterol [LDL-C], high-density-lipoprotein cholesterol, and triglycerides) immediately before and after stress and at 20 and 60 minutes of recovery. All lipid levels were corrected for stress hemoconcentration. Compared with normotensives, hypertensives had greater TC (P = .030) and LDL-C (P = .037) stress responses. Independent of each other, mean arterial pressure (MAP) upon screening and immediate increase in NE predicted immediate stress change in TC (MAP: beta = .41, P = .003; NE: beta = .35, P = .010) and LDL-C (MAP: beta = .32, P = .024; NE: beta = .38, P = .008). Mean arterial pressure alone predicted triglycerides stress change (beta = .32, P = .043) independent of NE stress change, age, and BMI. The MAP-by-NE interaction independently predicted immediate stress change of high-density-lipoprotein cholesterol (beta = -.58, P < .001) and of LDL-C (beta = -.25, P < .08). We conclude that MAP and NE stress reactivity may elicit proatherogenic changes of plasma lipids in response to acute psychosocial stress, providing one mechanism by which stress might increase cardiovascular risk in hypertension.
Resumo:
BACKGROUND: Circulating progenitor cells have been implicated with maintaining vascular integrity. Low counts are found in adults with high cardiovascular risk and are associated with impaired endothelial function. It remains unknown whether psychosocial risk factors are independently related to counts of circulating progenitor cells. METHODS: We investigated a random sample of 468 adult industrial employees (mean age 41.2 years, 89% men) of Caucasian origin. Cardiovascular risk factors (blood pressure, LDL, HDL and C-reactive protein), health behavior (smoking, alcohol and physical exercise), psychological variables (effort-reward imbalance social support, negative affectivity) and interaction terms served as predictors of circulating progenitor cells (CD34+ CD31dim) as enumerated by flow-cytometry. FINDINGS: Psychosocial variables were independently associated with progenitor cell counts. The association with risk factors increased with age (explained variance in 18-36 year olds R(2)=0.17, p=0.55; age 36.1-46 R(2)=0.32, p=0.001; age>46 R(2)=0.27, p<0.001). Data revealed a shift from a larger association between behavioral and psychosocial variables and cell counts to a stronger association between biological variables and cell counts in older individuals. A significant interaction was observed between smoking and effort-reward imbalance in middle-aged subjects, those with both risk factors present had lower cell counts. In older employees, the interaction between biological risk factors and smoking was related to lower cell counts. INTERPRETATION: In working middle-aged and older men, psychosocial risk factors were related to circulating counts of progenitor cells. Smoking interacted negatively with psychosocial risk factors (middle-aged men) or with biological risk factors (older employees).
Resumo:
GH replacement therapy has been shown to improve the dyslipidemic condition in a substantial proportion of patients with adult GH deficiency. The mechanisms are not yet fully elucidated. Low-density lipoprotein (LDL) apolipoprotein B100 (apoB) formation and catabolism are important determinants of plasma cholesterol concentrations. This study examined the effect of GH replacement therapy on LDL apoB metabolism using a stable isotope turnover technique. LDL apoB kinetics was determined in 13 adult patients with GH deficiency before and after 3 months GH/placebo treatment in a randomized, double-blind, placebo-controlled study. LDL apoB (13)C-leucine enrichment was determined by isotope-ratio mass spectrometry. Plasma volume was assessed by standardized radionuclide dilution technique. GH replacement therapy significantly decreased LDL cholesterol, LDL apoB concentrations, and LDL apoB pool size compared with placebo. Compared with baseline, GH replacement therapy resulted in a significant increase in plasma volume and fractional catabolic rate, whereas LDL formation rate remained unchanged. LDL lipid content did not significantly change after GH and placebo. This study suggests that short-term GH replacement therapy decreases the LDL apoB pool by increasing removal of LDL particles without changing LDL composition or LDL apoB production rate. In addition, it is possible that the beneficial effects of GH on the cardiovascular system contribute to these findings.
Resumo:
We compared atorvastatin with simvastatin-based therapies in a prospective observational study of 201 patients with severe hyperlipidaemia. Atorvastatin 10 mg therapy was substituted for simvastatin 20 mg, 20 mg for 40 mg, 40 mg for simvastatin 40 mg plus resin, and 80 mg for simvastatin-fibrate-resin therapy. Lipid and safety profiles were assessed. Atorvastatin reduced total cholesterol by 31 +/- 11-40 +/- 14% vs. 25 +/- 12-31 +/- 11%; LDL by 38 +/- 16-45 +/- 18% vs. 31 +/- 18-39 +/- 18% and geometric mean triglycerides by 29.3-37.3% vs. 16.6-24.8%, but reduced HDL 11% +/- 47% at 80 mg compared with a 16% +/- 34% increase with simvastatin-based therapy. Target LDL < 3.5 mmol/l was achieved more often with atorvastatin (63% vs. 50%; p < 0.001). Atorvastatin increased geometric mean fibrinogen by 12-20% vs. a 0-6% fall with simvastatin (p << 0.001). Side effects were noted in 10-36% of patients, including one case of rhabdomyolysis, and 36% discontinued therapy. These data suggest that atorvastatin is more effective than current simvastatin-based therapies in achieving treatment targets in patients with familial hypercholesterolaemia but at the expense of a possible increase in side-effects. This issue needs further study in randomized controlled trials.
Resumo:
Dyslipidaemia is often associated with adult growth hormone (GH) deficiency. Reduced removal of very-low-density lipoprotein (VLDL) apolipoprotein B-100 (apo B-100) can, in part, explain the "unfavourable" lipid profile of these patients. By modifying VLDL composition and through its action on low-density lipoprotein (LDL) receptors, GH may improve the lipid profile by increasing direct hepatic uptake of VLDL apo B-100, thereby decreasing conversion to LDL. Although GH stimulates VLDL apo B-100 secretion, this is exceeded by its effects in upregulating LDL receptors and modifying VLDL composition. We hypothesize that the improved lipid profile, in particular the decrease in cholesterol-rich VLDL particles, may contribute to a possible antiatherogenic action of GH. GH appears to have an important role in hepatic apo B-100 metabolism. However, we are just at the beginning of understanding the underlying mechanism. Further studies are required to investigate the effect of GH on other lipoprotein classes, in particular VLDL subfractions, intermediate-density lipoprotein, LDL and high-density lipoprotein. The key question, however, remains as to whether GH replacement therapy can reduce cardiovascular mortality. Long-term studies with sufficient numbers of patients are required to answer this question.
Resumo:
Dyslipidemia is one of the main modifiable cardiovascular risk factors. There is strong evidence for the efficacy of lipid-lowering drugs in secondary prevention, as well as in primary prevention for patients at high cardiovascular risk. In primary prevention, indication for lipid-lowering interventions should be based on an individual assessment of the cardiovascular risk and on the LDL cholesterol level, despite less strong evidence for the efficacy of drug-based interventions in low risk patients. Treatment consists of statins, as well as lifestyle modifications such as body weight control and increased physical exercise. The latter constitute the primary intervention in patients at low cardiovascular risk. Secondary dyslipidemias due to an underlying medical condition and familial dyslipidemias such as Familial Hypercholesterolemia and Familial Combined Hyperlipidemia should be identified and treated accordingly, taking into account that the risk scoring systems are not appropriate in these situations.
Resumo:
We have shown that liposomal amphotericin B (L-AmpB) decreased renal toxicity and maintains the antifungal activity of amphotericin B (AmpB). We have also observed that L-AmpB is predominantly associated with high density lipoproteins (HDL) as compared to Fungizone (AmpB + deoxycholate). The present experiments were designed to assess the biological relevance of transferring AmpB to HDL. We observed that AmpB was less toxic to kidney cells when associated with HDL, however AmpB toxicity was maintained when associated with LDL. To further understand how HDL-associated AmpB reduces renal cell toxicity the presence of HDL and LDL receptors in this cell line was determined. We observed that these cells expressed high and low affinity LDL receptors, but only low affinity HDL receptors. The reduced renal cell toxicity of HDL-associated AmpB may be due to its lack of interaction with renal cells because of the absence of HDL receptors. Since AmpB interacts with cholesteryl esters whose transfer among lipoproteins is regulated by Lipid transfer Protein (LTP), the role of LTP on the distribution of AmpB to HDL and LDL was next examined. We found that negatively charged liposomes significantly reduced LTP-mediated transfer of CE between HDL and LDL, independent of the presence of AmpB, while Fungizone only significantly inhibited CE transfer at one concentration tested (20$\mu$g/ml). Therefore, we believe that the decreased renal toxicity of L-AmpB is related to its predominant distribution to HDL which is regulated by the inhibition of LTP activity. ^
Resumo:
Any functionally important mutation is embedded in an evolutionary matrix of other mutations. Cladistic analysis, based on this, is a method of investigating gene effects using a haplotype phylogeny to define a set of tests which localize causal mutations to branches of the phylogeny. Previous implementations of cladistic analysis have not addressed the issue of analyzing data from related individuals, though in human studies, family data are usually needed to obtain unambiguous haplotypes. In this study, a method of cladistic analysis is described in which haplotype effects are parameterized in a linear model which accounts for familial correlations. The method was used to study the effect of apolipoprotein (Apo) B gene variation on total-, LDL-, and HDL-cholesterol, triglyceride, and Apo B levels in 121 French families. Five polymorphisms defined Apo B haplotypes: the signal peptide Insertion/deletion, Bsp 1286I, XbaI, MspI, and EcoRI. Eleven haplotypes were found, and a haplotype phylogeny was constructed and used to define a set of tests of haplotype effects on lipid and apo B levels.^ This new method of cladistic analysis, the parametric method, found significant effects for single haplotypes for all variables. For HDL-cholesterol, 3 clusters of evolutionarily-related haplotypes affecting levels were found. Haplotype effects accounted for about 10% of the genetic variance of triglyceride and HDL-cholesterol levels. The results of the parametric method were compared to those of a method of cladistic analysis based on permutational testing. The permutational method detected fewer haplotype effects, even when modified to account for correlations within families. Simulation studies exploring these differences found evidence of systematic errors in the permutational method due to the process by which haplotype groups were selected for testing.^ The applicability of cladistic analysis to human data was shown. The parametric method is suggested as an improvement over the permutational method. This study has identified candidate haplotypes for sequence comparisons in order to locate the functional mutations in the Apo B gene which may influence plasma lipid levels. ^
Interactions between cyclosporin A, low-density lipoprotein and the low-density lipoprotein receptor
Resumo:
Cyclosporine A (CSA) is a cyclic eleven amino acid, lipophilic molecule used therapeutically as an immunosuppressive agent. Cyclosporine can specifically inhibit the transcription of a number of different genes. It is known that CSA is bound almost exclusively to lipoproteins in plasma, however, the relationship between the low density lipoprotein (LDL), the LDL receptor, and CSA has not been fully elucidated. The exact mechanism of cellular uptake of CSA is unknown, but it is believed to be by simple passive diffusion across the cell membrane. In addition, it has been recently shown that the frequent finding of hypercholesterolemia seen in patients treated with CSA can be explained by a CSA-induced effect. The mechanism by which CSA induces hypercholesterolemia is not known. We have used an LDL receptor-deficient animal model, the Watanabe Heritable Hyperlipidemic (WHHL) rabbit to investigate the role of LDL and the LDL receptor in the cellular uptake of CSA. Using this animal model, we have shown that CSA uptake by lymphocytes is predominantly LDL receptor-mediated. Chemical modification of apoB-100 on LDL particles abolishes their ability to bind to the LDL receptor. When CSA is incubated with modified LDL much less is taken-up than when native LDL is incubated with CSA. Treatment of two human cell lines with CSA results in a dose-dependent decrease in LDL receptor mRNA levels. Using a novel transfection system involving the 5$\sp\prime$-flanking region of the LDL receptor gene, we have found that CSA decreases the number of transcripts, but is dependent on whether or not cholesterol is present and the stage of growth of the cells. ^
Resumo:
Coronary heart disease (CHD) is the leading cause of death in the United States. Recently, renin-angiotensin system (RAS) was found associated with atherosclerosis formation, with angiotensin II inducing vascular smooth muscle cell growth and migration, platelet activation and aggregation, and stimulation of plasminogen activator inhibitor-1. Angiotensin II is converted from angiotensin I by angiotensin I-converting enzyme (ACE) and this enzyme is mainly genetically determined. The ACE gene has been assigned to chromosome 17q23 and an insertion/deletion (I/D)polymorphism has been characterized by the presence/absence of a 287 bp fragment in intron 16 of the gene. The two alleles form three genotypes, namely, DD, ID and II and the DD genotype has been linked to higher plasma ACE levels and cell ACE activity.^ In this study, the association between the ACE I/D polymorphism and carotid artery wall thickness measured by B-mode ultrasound was investigated in a biracial sample, and the association between the gene and incident CHD was investigated in whites and if the gene-CHD association in whites, if any, was due to the gene effect on atherosclerosis. The study participants are from the prospective Atherosclerosis Risk in Communities (ARIC) Study, including adults aged 45 to 65 years. The present dissertation used a matched case-control design for studying the associations of the ACE gene with carotid artery atherosclerosis and an unmatched case-control design for the association of the gene with CHD. A significant recessive effect of the D allele on carotid artery thickness was found in blacks (OR = 3.06, 95% C.I: 1.11-8.47, DD vs. ID and II) adjusting for age, gender, cigarette smoking, LDL-cholesterol and diabetes. No similar associations were found in whites. The ACE I/D polymorphism is significantly associated with coronary heart disease in whites, and while stratifying data by carotid artery wall thickness, the significant associations were only observed in thin-walled subgroups. Assuming a recessive effect of the D allele, odds ratio was 2.84 (95% C.I:1.17-6.90, DD vs. ID and II) and it was 2.30 (95% C.I:1.22-4.35, DD vs. ID vs. II) assuming a codominant effect of the D allele. No significant associations were observed while comparing thick-walled CHD cases with thin-walled controls. Following conclusions could be drawn: (1) The ACE I/D polymorphism is unlikely to confer appreciable increase in the risk of carotid atherosclerosis in US whites, but may increases the risk of carotid atherosclerosis in blacks. (2) ACE I/D polymorphism is a genetic risk factor for incident CHD in US whites and this effect is separate from the chronic process of atherosclerosis development. Finally, the associations observed here are not causal, since the I/D polymorphism is in an intron, where no ACE proteins are encoded. ^
Resumo:
There is broad evidence that lowering low-density lipoprotein (LDL) cholesterol will reduce cardiovascular risk. However, in patients on maintenance hemodialysis treatment, lowering LDL cholesterol is not as effective in preventing cardiovascular complications as in the general population. Cholesterol is either endogenously synthesized or absorbed from the intestine. It has been suggested that the benefit of using statins to prevent atherosclerotic complications is less pronounced in people with high absorption of cholesterol. Recent data indicate that patients on hemodialysis have high absorption of cholesterol. Therefore, these patients may benefit from dietary counseling to reduce cholesterol intake, from functional foods containing plant sterols and stanols, and from drugs that interfere with intestinal absorption of sterols (i.e., ezetimibe, bile acid resins, and sevelamer). This review discusses cholesterol homeostasis and the perspective of personalized treatment of hypercholesterolemia in hemodialysis.
Resumo:
AIMS The genetic polymorphism of apolipoprotein E (APOE) has been suggested to modify the effect of smoking on the development of coronary artery disease (CAD) in apparently healthy persons. The interaction of these factors in persons undergoing coronary angiography is not known. METHODS AND RESULTS We analysed the association between the APOE-genotype, smoking, angiographic CAD, and mortality in 3263 participants of the LUdwigshafen RIsk and Cardiovascular Health study. APOE-genotypes were associated with CAD [ε22 or ε23: odds ratio (OR) 0.56, 95% confidence interval (CI) 0.43-0.71; ε24 or ε34 or ε44: OR 1.10, 95% CI 0.89-1.37 compared with ε33] and moderately with cardiovascular mortality [ε22 or ε23: hazard ratio (HR) 0.71, 95% CI 0.51-0.99; ε33: HR 0.92, 95% CI 0.75-1.14 compared with ε24 or ε34 or ε44]. HRs for total mortality were 1.39 (95% CI 0.39-0.1.67), 2.29 (95% CI 1.85-2.83), 2.07 (95% CI 1.64-2.62), and 2.95 (95% CI 2.10-4.17) in ex-smokers, current smokers, current smokers without, or current smokers with one ε4 allele, respectively, compared with never-smokers. Carrying ε4 increased mortality in current, but not in ex-smokers (HR 1.66, 95% CI 1.04-2.64 for interaction). These findings applied to cardiovascular mortality, were robust against adjustment for cardiovascular risk factors, and consistent across subgroups. No interaction of smoking and ε4 was seen regarding non-cardiovascular mortality. Smokers with ε4 had reduced average low-density lipoprotein (LDL) diameters, elevated oxidized LDL, and lipoprotein-associated phospholipase A2. CONCLUSION In persons undergoing coronary angiography, there is a significant interaction between APOE-genotype and smoking. The presence of the ε4 allele in current smokers increases cardiovascular and all-cause mortality.
Resumo:
AIMS The aim of the study was to examine whether differences in average diameter of low-density lipoprotein (LDL) particles were associated with total and cardiovascular mortality. METHODS AND RESULTS We studied 1643 subjects referred to coronary angiography, who did not receive lipid-lowering drugs. During a median follow-up of 9.9 years, 398 patients died, of these 246 from cardiovascular causes. We calculated average particle diameters of LDL from the composition of LDL obtained by β-quantification. When LDL with intermediate average diameters (16.5-16.8 nm) were used as reference category, the hazard ratios (HRs) adjusted for cardiovascular risk factors for death from any cause were 1.71 (95% CI: 1.31-2.25) and 1.24 (95% CI: 0.95-1.63) in patients with large (>16.8 nm) or small LDL (<16.5 nm), respectively. Adjusted HRs for death from cardiovascular causes were 1.89 (95% CI: 1.32-2.70) and 1.54 (95% CI: 1.06-2.12) in patients with large or small LDL, respectively. Patients with large LDL had higher concentrations of the inflammatory markers interleukin (IL)-6 and C-reactive protein than patients with small or intermediate LDL. Equilibrium density gradient ultracentrifugation revealed characteristic and distinct profiles of LDL particles in persons with large (approximately even distribution of intermediate-density lipoproteins and LDL-1 through LDL-6) intermediate (peak concentration at LDL-4) or small (peak concentration at LDL-6) average LDL particle diameters. CONCLUSIONS Calculated LDL particle diameters identify patients with different profiles of LDL subfractions. Both large and small LDL diameters are independently associated with increased risk mortality of all causes and, more so, due to cardiovascular causes compared with LDL of intermediate size.
Resumo:
AIM The effect of long-term high-intensity statin therapy on coronary atherosclerosis among patients with acute ST-segment elevation myocardial infarction (STEMI) is unknown. The aim of this study was to quantify the impact of high-intensity statin therapy on plaque burden, composition, and phenotype in non-infarct-related arteries of STEMI patients undergoing primary percutaneous coronary intervention (PCI). METHODS AND RESULTS Between September 2009 and January 2011, 103 STEMI patients underwent intravascular ultrasonography (IVUS) and radiofrequency ultrasonography (RF-IVUS) of the two non-infarct-related epicardial coronary arteries (non-IRA) after successful primary PCI. Patients were treated with high-intensity rosuvastatin (40 mg/day) throughout 13 months and serial intracoronary imaging with the analysis of matched segments was available for 82 patients with 146 non-IRA. The primary IVUS end-point was the change in per cent atheroma volume (PAV). After 13 months, low-density lipoprotein cholesterol (LDL-C) had decreased from a median of 3.29 to 1.89 mmol/L (P < 0.001), and high-density lipoprotein cholesterol (HDL-C) levels had increased from 1.10 to 1.20 mmol/L (P < 0.001). PAV of the non-IRA decreased by -0.9% (95% CI: -1.56 to -0.25, P = 0.007). Patients with regression in at least one non-IRA were more common (74%) than those without (26%). Per cent necrotic core remained unchanged (-0.05%, 95% CI: -1.05 to 0.96%, P = 0.93) as did the number of RF-IVUS defined thin cap fibroatheromas (124 vs. 116, P = 0.15). CONCLUSION High-intensity rosuvastatin therapy over 13 months is associated with regression of coronary atherosclerosis in non-infarct-related arteries without changes in RF-IVUS defined necrotic core or plaque phenotype among STEMI patients.