904 resultados para Dunkl Kernel
Resumo:
Este trabalho identifica o Código de Ética e Prática Profissional da engenharia de software como o conjunto de práticas para consideração de fatores humanos na engenharia de software. A seguir, estende o Kernel da especificação Essence, e o utiliza para conduzir a aplicação desse conjunto de práticas. A prova de conceito indica que o conjunto de práticas identificadas não garante a consideração de fatores humanos na engenharia de software. Considerar a ética nas interações existentes na empreitada de engenharia de software não é um simples caso de utilização de checklists como forma de verificar o que deve ser feito para certificar que algo foi realizado. Considerar a ética é mais do que isso. É necessário que todas as pessoas tenham consciência da importância da ética, do respeito de um ao outro e à sociedade.
Resumo:
Rock mass characterization requires a deep geometric understanding of the discontinuity sets affecting rock exposures. Recent advances in Light Detection and Ranging (LiDAR) instrumentation currently allow quick and accurate 3D data acquisition, yielding on the development of new methodologies for the automatic characterization of rock mass discontinuities. This paper presents a methodology for the identification and analysis of flat surfaces outcropping in a rocky slope using the 3D data obtained with LiDAR. This method identifies and defines the algebraic equations of the different planes of the rock slope surface by applying an analysis based on a neighbouring points coplanarity test, finding principal orientations by Kernel Density Estimation and identifying clusters by the Density-Based Scan Algorithm with Noise. Different sources of information —synthetic and 3D scanned data— were employed, performing a complete sensitivity analysis of the parameters in order to identify the optimal value of the variables of the proposed method. In addition, raw source files and obtained results are freely provided in order to allow to a more straightforward method comparison aiming to a more reproducible research.
Resumo:
Thesis (Master, Mathematics & Statistics) -- Queen's University, 2016-07-04 20:27:20.386
Resumo:
Les artéfacts métalliques entraînent un épaississement artéfactuel de la paroi des tuteurs en tomodensitométrie (TDM) avec réduction apparente de leur lumière. Cette étude transversale prospective, devis mesures répétées et observateurs avec méthode en aveugle, chez 24 patients consécutifs/71 tuteurs coronariens a pour objectif de comparer l’épaisseur de paroi des tuteurs en TDM après reconstruction par un algorithme avec renforcement des bords et un algorithme standard. Une angiographie coronarienne par TDM 256 coupes a été réalisée, avec reconstruction par algorithmes avec renforcement des bords et standard. L’épaisseur de paroi des tuteurs était mesurée par méthodes orthogonale (diamètres) et circonférentielle (circonférences). La qualité d’image des tuteurs était évaluée par échelle ordinale, et les données analysées par modèles linéaire mixte et régression logistique des cotes proportionnelles. L’épaisseur de paroi des tuteurs était inférieure avec l’algorithme avec renforcement des bords comparé à l’algorithme standard, avec les méthodes orthogonale (0,97±0,02 vs 1,09±0,03 mm, respectivement; p<0,001) et circonférentielle (1,13±0,02 vs 1,21±0,02 mm, respectivement; p<0,001). Le premier causait moins de surestimation par rapport à l’épaisseur nominale comparé au second, avec méthodes orthogonale (0,89±0,19 vs 1,00±0,26 mm, respectivement; p<0,001) et circonférentielle (1,06±0,26 vs 1,13±0,31 mm, respectivement; p=0,005) et diminuait de 6 % la surestimation. Les scores de qualité étaient meilleurs avec l’algorithme avec renforcement des bords (OR 3,71; IC 95% 2,33–5,92; p<0,001). En conclusion, la reconstruction des images avec l’algorithme avec renforcement des bords génère des parois de tuteurs plus minces, moins de surestimation, et de meilleurs scores de qualité d’image que l’algorithme standard.
Resumo:
We estimate the 'fundamental' component of euro area sovereign bond yield spreads, i.e. the part of bond spreads that can be justified by country-specific economic factors, euro area economic fundamentals, and international influences. The yield spread decomposition is achieved using a multi-market, no-arbitrage affine term structure model with a unique pricing kernel. More specifically, we use the canonical representation proposed by Joslin, Singleton, and Zhu (2011) and introduce next to standard spanned factors a set of unspanned macro factors, as in Joslin, Priebsch, and Singleton (2013). The model is applied to yield curve data from Belgium, France, Germany, Italy, and Spain over the period 2005-2013. Overall, our results show that economic fundamentals are the dominant drivers behind sovereign bond spreads. Nevertheless, shocks unrelated to the fundamental component of the spread have played an important role in the dynamics of bond spreads since the intensification of the sovereign debt crisis in the summer of 2011
Resumo:
This package includes various Mata functions. kern(): various kernel functions; kint(): kernel integral functions; kdel0(): canonical bandwidth of kernel; quantile(): quantile function; median(): median; iqrange(): inter-quartile range; ecdf(): cumulative distribution function; relrank(): grade transformation; ranks(): ranks/cumulative frequencies; freq(): compute frequency counts; histogram(): produce histogram data; mgof(): multinomial goodness-of-fit tests; collapse(): summary statistics by subgroups; _collapse(): summary statistics by subgroups; gini(): Gini coefficient; sample(): draw random sample; srswr(): SRS with replacement; srswor(): SRS without replacement; upswr(): UPS with replacement; upswor(): UPS without replacement; bs(): bootstrap estimation; bs2(): bootstrap estimation; bs_report(): report bootstrap results; jk(): jackknife estimation; jk_report(): report jackknife results; subset(): obtain subsets, one at a time; composition(): obtain compositions, one by one; ncompositions(): determine number of compositions; partition(): obtain partitions, one at a time; npartitionss(): determine number of partitions; rsubset(): draw random subset; rcomposition(): draw random composition; colvar(): variance, by column; meancolvar(): mean and variance, by column; variance0(): population variance; meanvariance0(): mean and population variance; mse(): mean squared error; colmse(): mean squared error, by column; sse(): sum of squared errors; colsse(): sum of squared errors, by column; benford(): Benford distribution; cauchy(): cumulative Cauchy-Lorentz dist.; cauchyden(): Cauchy-Lorentz density; cauchytail(): reverse cumulative Cauchy-Lorentz; invcauchy(): inverse cumulative Cauchy-Lorentz; rbinomial(): generate binomial random numbers; cebinomial(): cond. expect. of binomial r.v.; root(): Brent's univariate zero finder; nrroot(): Newton-Raphson zero finder; finvert(): univariate function inverter; integrate_sr(): univariate function integration (Simpson's rule); integrate_38(): univariate function integration (Simpson's 3/8 rule); ipolate(): linear interpolation; polint(): polynomial inter-/extrapolation; plot(): Draw twoway plot; _plot(): Draw twoway plot; panels(): identify nested panel structure; _panels(): identify panel sizes; npanels(): identify number of panels; nunique(): count number of distinct values; nuniqrows(): count number of unique rows; isconstant(): whether matrix is constant; nobs(): number of observations; colrunsum(): running sum of each column; linbin(): linear binning; fastlinbin(): fast linear binning; exactbin(): exact binning; makegrid(): equally spaced grid points; cut(): categorize data vector; posof(): find element in vector; which(): positions of nonzero elements; locate(): search an ordered vector; hunt(): consecutive search; cond(): matrix conditional operator; expand(): duplicate single rows/columns; _expand(): duplicate rows/columns in place; repeat(): duplicate contents as a whole; _repeat(): duplicate contents in place; unorder2(): stable version of unorder(); jumble2(): stable version of jumble(); _jumble2(): stable version of _jumble(); pieces(): break string into pieces; npieces(): count number of pieces; _npieces(): count number of pieces; invtokens(): reverse of tokens(); realofstr(): convert string into real; strexpand(): expand string argument; matlist(): display a (real) matrix; insheet(): read spreadsheet file; infile(): read free-format file; outsheet(): write spreadsheet file; callf(): pass optional args to function; callf_setup(): setup for mm_callf().
Resumo:
Blind deconvolution is the problem of recovering a sharp image and a blur kernel from a noisy blurry image. Recently, there has been a significant effort on understanding the basic mechanisms to solve blind deconvolution. While this effort resulted in the deployment of effective algorithms, the theoretical findings generated contrasting views on why these approaches worked. On the one hand, one could observe experimentally that alternating energy minimization algorithms converge to the desired solution. On the other hand, it has been shown that such alternating minimization algorithms should fail to converge and one should instead use a so-called Variational Bayes approach. To clarify this conundrum, recent work showed that a good image and blur prior is instead what makes a blind deconvolution algorithm work. Unfortunately, this analysis did not apply to algorithms based on total variation regularization. In this manuscript, we provide both analysis and experiments to get a clearer picture of blind deconvolution. Our analysis reveals the very reason why an algorithm based on total variation works. We also introduce an implementation of this algorithm and show that, in spite of its extreme simplicity, it is very robust and achieves a performance comparable to the top performing algorithms.
Resumo:
The FANOVA (or “Sobol’-Hoeffding”) decomposition of multivariate functions has been used for high-dimensional model representation and global sensitivity analysis. When the objective function f has no simple analytic form and is costly to evaluate, computing FANOVA terms may be unaffordable due to numerical integration costs. Several approximate approaches relying on Gaussian random field (GRF) models have been proposed to alleviate these costs, where f is substituted by a (kriging) predictor or by conditional simulations. Here we focus on FANOVA decompositions of GRF sample paths, and we notably introduce an associated kernel decomposition into 4 d 4d terms called KANOVA. An interpretation in terms of tensor product projections is obtained, and it is shown that projected kernels control both the sparsity of GRF sample paths and the dependence structure between FANOVA effects. Applications on simulated data show the relevance of the approach for designing new classes of covariance kernels dedicated to high-dimensional kriging.
Resumo:
This paper examines the determinants of foreign direct investment (FDI) under free trade agreements (FTAs) from a new institutional perspective. First, the determinants of FDI are theoretically discussed from a new institutional perspective. Then, FDI is statistically analyzed at the aggregate level. Kernel density estimation of firm-size reveals some evidence of "structural changes" after FTAs, as characterized by the investing firms' paid-up capital stock. Statistical tests of the average and variance of the size distribution confirm this in the case of FTAs with Asian partner countries. For FTAs with South American partner countries, the presence of FTAs seems to promote larger-scale FDIs. These results remain correlational instead of causal, and more statistical analyses would be needed to infer causality. Policy implications suggest that participants should consider "institutional" aspects of FTAs, that is, the size matters as a determinant of FDI. Future work along this line is needed to study "firm heterogeneity."
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
In a previous paper, Hoornaert et al. (Powder Technol. 96 (1998); 116-128) presented data from granulation experiments performed in a 50 L Lodige high shear mixer. In this study that same data was simulated with a population balance model. Based on an analysis of the experimental data, the granulation process was divided into three separate stages: nucleation, induction, and coalescence growth. These three stages were then simulated separately, with promising results. it is possible to derive a kernel that fit both the induction and the coalescence growth stage. Modeling the nucleation stage proved to be more challenging due to the complex mechanism of nucleus formation. From this work some recommendations are made for the improvement of this type of model.
Resumo:
A test of the ability of a probabilistic neural network to classify deposits into types on the basis of deposit tonnage and average Cu, Mo, Ag, Au, Zn, and Pb grades is conducted. The purpose is to examine whether this type of system might serve as a basis for integrating geoscience information available in large mineral databases to classify sites by deposit type. Benefits of proper classification of many sites in large regions are relatively rapid identification of terranes permissive for deposit types and recognition of specific sites perhaps worthy of exploring further. Total tonnages and average grades of 1,137 well-explored deposits identified in published grade and tonnage models representing 13 deposit types were used to train and test the network. Tonnages were transformed by logarithms and grades by square roots to reduce effects of skewness. All values were scaled by subtracting the variable's mean and dividing by its standard deviation. Half of the deposits were selected randomly to be used in training the probabilistic neural network and the other half were used for independent testing. Tests were performed with a probabilistic neural network employing a Gaussian kernel and separate sigma weights for each class (type) and each variable (grade or tonnage). Deposit types were selected to challenge the neural network. For many types, tonnages or average grades are significantly different from other types, but individual deposits may plot in the grade and tonnage space of more than one type. Porphyry Cu, porphyry Cu-Au, and porphyry Cu-Mo types have similar tonnages and relatively small differences in grades. Redbed Cu deposits typically have tonnages that could be confused with porphyry Cu deposits, also contain Cu and, in some situations, Ag. Cyprus and kuroko massive sulfide types have about the same tonnages. Cu, Zn, Ag, and Au grades. Polymetallic vein, sedimentary exhalative Zn-Pb, and Zn-Pb skarn types contain many of the same metals. Sediment-hosted Au, Comstock Au-Ag, and low-sulfide Au-quartz vein types are principally Au deposits with differing amounts of Ag. Given the intent to test the neural network under the most difficult conditions, an overall 75% agreement between the experts and the neural network is considered excellent. Among the largestclassification errors are skarn Zn-Pb and Cyprus massive sulfide deposits classed by the neuralnetwork as kuroko massive sulfides—24 and 63% error respectively. Other large errors are the classification of 92% of porphyry Cu-Mo as porphyry Cu deposits. Most of the larger classification errors involve 25 or fewer training deposits, suggesting that some errors might be the result of small sample size. About 91% of the gold deposit types were classed properly and 98% of porphyry Cu deposits were classes as some type of porphyry Cu deposit. An experienced economic geologist would not make many of the classification errors that were made by the neural network because the geologic settings of deposits would be used to reduce errors. In a separate test, the probabilistic neural network correctly classed 93% of 336 deposits in eight deposit types when trained with presence or absence of 58 minerals and six generalized rock types. The overall success rate of the probabilistic neural network when trained on tonnage and average grades would probably be more than 90% with additional information on the presence of a few rock types.
Resumo:
Mineral processing plants use two main processes; these are comminution and separation. The objective of the comminution process is to break complex particles consisting of numerous minerals into smaller simpler particles where individual particles consist primarily of only one mineral. The process in which the mineral composition distribution in particles changes due to breakage is called 'liberation'. The purpose of separation is to separate particles consisting of valuable mineral from those containing nonvaluable mineral. The energy required to break particles to fine sizes is expensive, and therefore the mineral processing engineer must design the circuit so that the breakage of liberated particles is reduced in favour of breaking composite particles. In order to effectively optimize a circuit through simulation it is necessary to predict how the mineral composition distributions change due to comminution. Such a model is called a 'liberation model for comminution'. It was generally considered that such a model should incorporate information about the ore, such as the texture. However, the relationship between the feed and product particles can be estimated using a probability method, with the probability being defined as the probability that a feed particle of a particular composition and size will form a particular product particle of a particular size and composition. The model is based on maximizing the entropy of the probability subject to mass constraints and composition constraint. Not only does this methodology allow a liberation model to be developed for binary particles, but also for particles consisting of many minerals. Results from applying the model to real plant ore are presented. A laboratory ball mill was used to break particles. The results from this experiment were used to estimate the kernel which represents the relationship between parent and progeny particles. A second feed, consisting primarily of heavy particles subsampled from the main ore was then ground through the same mill. The results from the first experiment were used to predict the product of the second experiment. The agreement between the predicted results and the actual results are very good. It is therefore recommended that more extensive validation is needed to fully evaluate the substance of the method. (C) 2003 Elsevier Ltd. All rights reserved.