952 resultados para Drumstick yield
Resumo:
Maximum production in hedgerow olive orchards is likely not achieved with maximum evapotranspiration over the long-term. Thus, regulated deficit irrigation (RDI) should be considered as a management option. Four irrigation treatments were evaluated during the summer when olive is most drought resistant. Control (CON) was irrigated to maintain the rootzone close to field capacity. Severe water deficit was applied by irrigating 30% CON from end of fruit drop to end July (DI-J) and from end July until beginning of oil synthesis (DI-A). Less severe water deficit was applied during July and August (DI-JA) by irrigating 50% CON. Flowering, fruiting, abscission, fruit development, fresh and dry weight of fruits, and oil production were evaluated. There were not significant differences in number of buds initiated, number of fruits per inflorescence and fruit drop. Oil production was significantly different between irrigation treatments in all experimental years. CON produced more oil and fruit with higher oil% than DI-A and DI-JA. Oil production of DI-J was not significantly reduced compared to CON and oil% was greater. DI-J was the most effective RDI strategy; with 16% less applied water relative to CON average loss in oil production of 8% was not significantly different to CON. While DI-JA saved most water (27%), oil production was reduced by 15%. Greatest loss in oil production (21%) was observed in DI-A with water saving of 22%.
Resumo:
One of the main problems of watermelon crops in Sou theast Spain is the thermal difference because of c limatic conditions that appear during the first stages of the crop. The objective of this work was to evaluate the effect of inducing the systemic acq uired resistance (SAR) and the induced systemic resistance (ISR) through the application of jasmonic ac id (JA) and benzoic acid (BA), respectively, to counter the abiotic stress. We assessed two treatments of JA and BA, T1 (500 mg·kg-1 + 500 mg·kg -1 ) and T 2 (2000 mg·kg -1 + 2000 mg·kg -1), as well as a control test using an experimental design of randomized blocks with four replications. The results obtained for kg·m -2, fruits/m², kg/plant and fruits/plant did not show statistically significant differences. However, we obtained statistically sig nificant differences in the average fruit weight co mpared with the control test in the two experiments carried out in 2009 and 2010. The results showed that there was no metabolic cost in the plants when applying the assessed treatments of JA and BA.
Resumo:
El potencial hídrico del tronco es una herramiento útil para el manejo del riego. Los umbrales de riego deben establecerse para cada periodo fisiológico. En este experimento, realizado en Arbequina en seto, se estudio la relacion entre los potenciales hídricos y la produccion de aceite. Cuando los potenciales hidricos son inferiores a -1.3 MPa el crecimiento vegetativo se reduce mas del 50%. En cuanto a la produccion, se observó que regando en Julio cuando se alcanzan potenciales cercanos a -2.9 MPa se puede ahorrar agua sin afectar a la produccion. Sin embargo en Agosto el potencial debe mantenerse por encima de -2 MPa para que no se resienta la producción.
Resumo:
Las caracteristicas de la aceituna dependen de la radiacion interceptada. En este trabajo se estudia esta relación en estratos de 11 olivares en seto de la variedad Arbequina orientados NS.
Generation of Fission Yield covariance data and application to Fission Pulse Decay Heat calculations
Resumo:
Generation of Fission Yield covariance data and application to Fission Pulse Decay Heat calculations
Resumo:
Fission product yields are fundamental parameters for several nuclear engineering calculations and in particular for burn-up/activation problems. The impact of their uncertainties was widely studied in the past and valuations were released, although still incomplete. Recently, the nuclear community expressed the need for full fission yield covariance matrices to produce inventory calculation results that take into account the complete uncertainty data. In this work, we studied and applied a Bayesian/generalised least-squares method for covariance generation, and compared the generated uncertainties to the original data stored in the JEFF-3.1.2 library. Then, we focused on the effect of fission yield covariance information on fission pulse decay heat results for thermal fission of 235U. Calculations were carried out using different codes (ACAB and ALEPH-2) after introducing the new covariance values. Results were compared with those obtained with the uncertainty data currently provided by the library. The uncertainty quantification was performed with the Monte Carlo sampling technique. Indeed, correlations between fission yields strongly affect the statistics of decay heat. Introduction Nowadays, any engineering calculation performed in the nuclear field should be accompanied by an uncertainty analysis. In such an analysis, different sources of uncertainties are taken into account. Works such as those performed under the UAM project (Ivanov, et al., 2013) treat nuclear data as a source of uncertainty, in particular cross-section data for which uncertainties given in the form of covariance matrices are already provided in the major nuclear data libraries. Meanwhile, fission yield uncertainties were often neglected or treated shallowly, because their effects were considered of second order compared to cross-sections (Garcia-Herranz, et al., 2010). However, the Working Party on International Nuclear Data Evaluation Co-operation (WPEC)
Resumo:
The aim of this work is to test the present status of Evaluated Nuclear Decay and Fission Yield Data Libraries to predict decay heat and delayed neutron emission rate, average neutron energy and neutron delayed spectra after a neutron fission pulse. Calculations are performed with JEFF-3.1.1 and ENDF/B-VII.1, and these are compared with experimental values. An uncertainty propagation assessment of the current nuclear data uncertainties is performed.
Resumo:
Propagation of nuclear data uncertainties in reactor calculations is interesting for design purposes and libraries evaluation. Previous versions of the GRS XSUSA library propagated only neutron cross section uncertainties. We have extended XSUSA uncertainty assessment capabilities by including propagation of fission yields and decay data uncertainties due to the their relevance in depletion simulations. We apply this extended methodology to the UAM6 PWR Pin-Cell Burnup Benchmark, which involves uncertainty propagation through burnup.
Resumo:
Nitrate leaching (NL) is an important N loss process in irrigated agriculture that imposes a cost on the farmer and the environment. A meta-analysis of published experimental results from agricultural irrigated systems was conducted to identify those strategies that have proven effective at reducing NL and to quantify the scale of reduction that can be achieved. Forty-four scientific articles were identified which investigated four main strategies (water and fertilizer management, use of cover crops and fertilizer technology) creating a database with 279 observations on NL and 166 on crop yield. Management practices that adjust water application to crop needs reduced NL by a mean of 80% without a reduction in crop yield. Improved fertilizer management reduced NL by 40%, and the best relationship between yield and NL was obtained when applying the recommended fertilizer rate. Replacing a fallow with a non-legume cover crop reduced NL by 50% while using a legume did not have any effect on NL. Improved fertilizer technology also decreased NL but was the least effective of the selected strategies. The risk of nitrate leaching from irrigated systems is high, but optimum management practices may mitigate this risk and maintain crop yields while enhancing environmental sustainability.
Resumo:
Mediterranean climate is characterized by hot summer, high evapotranspiration rates, and scarce precipitations (400 mm per year) during grapevine cycle. These extremely dry conditions affect vineyard productivity and sustainability. Supplementary irrigation is a needed practice in order to maintain yield and quality. Almost all Spanish grape growing regions are characterized by these within this context, especially in the center region, where this study was performed. The main objective of this work was to study the influence of irrigation on yield and quality. For this aim, we applied different levels of irrigation (mm of water applied) during different stages of growth and berry maturity. Four experimental treatments were applied considering the amount of water and the moment of the application: T1: Water irrigation (420 mm) applied from bloom to maturity. T2: Corresponded to the traditional irrigation scheduling, from preveraison to maturity (154 mm). T3: Water irrigation from bloom to preveraison, and water deficit from veraison to maturity (312 mm). T4: Irrigation applied from preveraison to maturity (230 mm) Experimental vineyard, cv. Cabernet Sauvignon, was located in a commercial vineyard (Bodegas Licinia S.L.) in the hot region of Morata de Tajuña (Madrid). The trial was performed during 2010 and 2011 seasons. Our results showed that yield increased from 2010 to 2011 in the treatments with a higher amount of water appli ed, T1 and T3 (24 and 10 % of yield increase respectively). This was mainly due to an increase in bud fertility (nº of bunches per shoot). Furthermore, sugar content was higher in T3 (27.3 ºBrix), followed by T2 (27 ºBrix). By contrast, T4 (irrigation from veraison) presented the lowest solid soluble concentration and the highest acidity. These results suggest that grapevine has an intrinsic capacity to adapt to its environment. However, this adaptation capacity should be evaluated considering the sensibility of quality parameters during the maturity period (acidity, pH, aroma, color...) and its impact on yield. Here, we demonstrated that a higher amount of water irrigation applied was no linked to a negative effect on quality.
Resumo:
Comunicación Oral
Resumo:
Fast-growing tree species of Populus spp.,Salix spp. and Eucalyptus spp. are cultivated to produce wood in a short time. Poplars are cultivated with cycles of 15-18 years to obtain saw timber and peeler logs, but when grown as short -rotation coppice(SRC) to produce biomass, planting density increases and rotation is considerably reduced (3-5 years). In this regard, research efforts are focused in the identification of traits and loci that allow the generation of improved SRC biomass-yielding genotypes. Biomass yield is a highly complex trait as it is the combined outcome of many other complex traits, each under separate polygenic control. Among profitable biomass yield-related traits are the amount of sylleptic branching and the length of winter dormancy. In poplar and in a few other Salicaceae species some lateral buds grow out sylleptically, the same season in which they form without the need of an intervening rest period. Sylleptic branching in poplar increases branch number, leaf area and general growth of the tree in its early years, and is a reasonable predictor of coppice yield. On the other hand, the length of winter dormancy determines the extent of the growth period. Our group has characterized the RAV1 gene of Castanea sativa (CsRAV1), encoding a transcription factor of the subfamily RAV (Related to ABI3/VP1). CsRAV1 expression shows a marked seasonal pattern, being higher in autumn and winter both in stems and buds. We generated transgenic lines of the hybrid clone Populus tremulax P. alba INRA 717 1B4 constitutively expressing CsRAV 1. These CsRAV1-expressing poplars develop sylleptic branches only a few weeks after potting. In addition to the sylleptic branching phenotype, these trees show phenological features that could give rise to an extended growth period. We are currently assessing the phenotype and behavior of these transgenic trees in a field trial, and ultimately, we will evaluate the impact on lignocellulosic biomass quality and production.
Resumo:
The crop simulation model AquaCrop, recently developed by FAO can be used for a wide range of purposes. However, in its present form, its use over large areas or for applications that require a large number of simulations runs (e.g., long-term analysis), is not practical without developing software to facilitate such applications. Two tools for managing the inputs and outputs of AquaCrop, named AquaData and AquaGIS, have been developed for this purpose and are presented here. Both software utilities have been programmed in Delphi v. 5 and in addition, AquaGIS requires the Geographic Information System (GIS) programming tool MapObjects. These utilities allow the efficient management of input and output files, along with a GIS module to develop spatial analysis and effect spatial visualization of the results, facilitating knowledge dissemination. A sample of application of the utilities is given here, as an AquaCrop simulation analysis of impact of climate change on wheat yield in Southern Spain, which requires extensive input data preparation and output processing. The use of AquaCrop without the two utilities would have required approximately 1000 h of work, while the utilization of AquaData and AquaGIS reduced that time by more than 99%. Furthermore, the use of GIS, made it possible to perform a spatial analysis of the results, thus providing a new option to extend the use of the AquaCrop model to scales requiring spatial and temporal analyses.
Resumo:
The area cultivated using conservation tillage has recently increased in central Spain. However, soil compaction and water retention with conservation tillage still remains a genuine concern for landowners in this region be- cause of its potential effect on the crop growth and yield. The aim of this research is to determine the short- term influences of four tillage treatments on soil physical properties. In the experiment, bulk density, cone index, soil water potential, soil temperature and maize (Zea mays L.) productivity have been measured. A field experiment was established in spring of 2013 on a loamy soil. The experiment compared four tillage methods (zero tillage, ZT; reservoir tillage, RT; minimum tillage, MT; and conventional tillage, CT). Soil bulk density and soil cone index were measured during maize growing season and at harvesting time. Furthermore, the soil water potential was monitored by using a wireless sensors network with sensors at 20 and 40 cm depths. Also, soil temperatures were registered at depths of 5 and 12 cm. Results indicated that there were significant differ- ences between soil bulk density and cone index of ZT method and those of RT, MT, and CT, during the growing season; although, this difference was not significant at the time of harvesting in some soil layers. Overall, in most soil layers, tillage practice affected bulk density and cone index in the order: ZT N RT N MT N CT. Regardless oftheentireobservationperiod,results exhibited that soils under ZT and RT treatments usually resulted in higher water potential and lower soil temperature than the other two treatments at both soil depths. In addition, clear differences in maize grain yield were observed between ZT and CT treatments, with a grain yield (up to 15.4%) increase with the CT treatment. On the other hand, no significant differences among (RT, MT, and CT) on maizeyieldwerefound.Inconclusion,the impact of soil compaction increase and soil temperature decrease,pro- duced by ZT treatment is a potential reason for maize yield reduction in this tillage method. We found that RT could be certainly a viable option for farmers incentral Spain,particularly when switching to conservation tillage from conventional tillage. This technique showed a moderate and positive effect on soil physical properties and increased maize yields compared to ZT and MT, and provides an opportunity to stabilize maize yields compared to CT.
Resumo:
Reducing the gap between water-limited potential yield and actual yield in oil palm production systems through intensification is seen as an important option for sustainably increasing palm oil production. Simulation models can play an important role in quantifying water-limited potential yield, and therefore the scope for intensification, but no oil palm model exists that is both simple enough and at the same time incorporates sufficient plant physiological knowledge to be generally applicable across sites with different growing conditions. The objectives of this study therefore were to develop a model (PALMSIM) that simulates, on a monthly time step, the potential growth of oil palm as determined by solar radiation and to evaluate model performance against measured oil palm yields under optimal water and nutrient management for a range of sites across Indonesia and Malaysia. The maximum observed yield in the field matches the corresponding simulated yield for dry bunch weight with a RMSE of 1.7 Mg ha?1 year?1 against an observed yield of 18.8 Mg ha?1. Sensitivity analysis showed that PALMSIM is robust: simulated changes in yield caused by modifying the parameters by 10% are comparable to other tree crop model evaluations. While we acknowledge that, depending on the soils and climatic environment, yields may be often water limited, we suggest a relatively simple physiological approach to simulate potential yield, which can be usefully applied to high rainfall environments and is considered as a first step in developing an oil palm model that also simulates water-limited potential yield. To illustrate the application possibil- ities of the model, PALMSIM was used to create a potential yield map for Indonesia and Malaysia by sim- ulating the growth and yield at a resolution of 0.1?. This map of potential yield is considered as a first step towards a decision support tool that can identify potentially productive, but at the moment degraded sites in Indonesia and Malaysia. ?