830 resultados para Double-Wavelet Neuron
Resumo:
Background: Genetic variation for environmental sensitivity indicates that animals are genetically different in their response to environmental factors. Environmental factors are either identifiable (e.g. temperature) and called macro-environmental or unknown and called micro-environmental. The objectives of this study were to develop a statistical method to estimate genetic parameters for macro- and micro-environmental sensitivities simultaneously, to investigate bias and precision of resulting estimates of genetic parameters and to develop and evaluate use of Akaike’s information criterion using h-likelihood to select the best fitting model. Methods: We assumed that genetic variation in macro- and micro-environmental sensitivities is expressed as genetic variance in the slope of a linear reaction norm and environmental variance, respectively. A reaction norm model to estimate genetic variance for macro-environmental sensitivity was combined with a structural model for residual variance to estimate genetic variance for micro-environmental sensitivity using a double hierarchical generalized linear model in ASReml. Akaike’s information criterion was constructed as model selection criterion using approximated h-likelihood. Populations of sires with large half-sib offspring groups were simulated to investigate bias and precision of estimated genetic parameters. Results: Designs with 100 sires, each with at least 100 offspring, are required to have standard deviations of estimated variances lower than 50% of the true value. When the number of offspring increased, standard deviations of estimates across replicates decreased substantially, especially for genetic variances of macro- and micro-environmental sensitivities. Standard deviations of estimated genetic correlations across replicates were quite large (between 0.1 and 0.4), especially when sires had few offspring. Practically, no bias was observed for estimates of any of the parameters. Using Akaike’s information criterion the true genetic model was selected as the best statistical model in at least 90% of 100 replicates when the number of offspring per sire was 100. Application of the model to lactation milk yield in dairy cattle showed that genetic variance for micro- and macro-environmental sensitivities existed. Conclusion: The algorithm and model selection criterion presented here can contribute to better understand genetic control of macro- and micro-environmental sensitivities. Designs or datasets should have at least 100 sires each with 100 offspring.
Resumo:
Background: The sensitivity to microenvironmental changes varies among animals and may be under genetic control. It is essential to take this element into account when aiming at breeding robust farm animals. Here, linear mixed models with genetic effects in the residual variance part of the model can be used. Such models have previously been fitted using EM and MCMC algorithms. Results: We propose the use of double hierarchical generalized linear models (DHGLM), where the squared residuals are assumed to be gamma distributed and the residual variance is fitted using a generalized linear model. The algorithm iterates between two sets of mixed model equations, one on the level of observations and one on the level of variances. The method was validated using simulations and also by re-analyzing a data set on pig litter size that was previously analyzed using a Bayesian approach. The pig litter size data contained 10,060 records from 4,149 sows. The DHGLM was implemented using the ASReml software and the algorithm converged within three minutes on a Linux server. The estimates were similar to those previously obtained using Bayesian methodology, especially the variance components in the residual variance part of the model. Conclusions: We have shown that variance components in the residual variance part of a linear mixed model can be estimated using a DHGLM approach. The method enables analyses of animal models with large numbers of observations. An important future development of the DHGLM methodology is to include the genetic correlation between the random effects in the mean and residual variance parts of the model as a parameter of the DHGLM.
Resumo:
BACKGROUND: Whether the type of dietary fat could alter cardiometabolic responses to a hypercaloric diet is unknown. In addition, subclinical cardiometabolic consequences of moderate weight gain require further study. METHODS AND RESULTS: In a 7-week, double-blind, parallel-group, randomized controlled trial, 39 healthy, lean individuals (mean age of 27±4) consumed muffins (51% of energy [%E] from fat and 44%E refined carbohydrates) providing 750 kcal/day added to their habitual diets. All muffins had identical contents, except for type of fat; sunflower oil rich in polyunsaturated fatty acids (PUFA diet) or palm oil rich in saturated fatty acids (SFA diet). Despite comparable weight gain in the 2 groups, total: high-density lipoprotein (HDL) cholesterol, low-density lipoprotein:HDL cholesterol, and apolipoprotein B:AI ratios decreased during the PUFA versus the SFA diet (-0.37±0.59 versus +0.07±0.29, -0.31±0.49 versus +0.05±0.28, and -0.07±0.11 versus +0.01±0.07, P=0.003, P=0.007, and P=0.01 for between-group differences), whereas no significant differences were observed for other cardiometabolic risk markers. In the whole group (ie, independently of fat type), body weight increased (+2.2%, P<0.001) together with increased plasma proinsulin (+21%, P=0.007), insulin (+17%, P=0.003), proprotein convertase subtilisin/kexin type 9, (+9%, P=0.008) fibroblast growth factor-21 (+31%, P=0.04), endothelial markers vascular cell adhesion molecule-1, intercellular adhesion molecule-1, and E-selectin (+9, +5, and +10%, respectively, P<0.01 for all), whereas nonesterified fatty acids decreased (-28%, P=0.001). CONCLUSIONS: Excess energy from PUFA versus SFA reduces atherogenic lipoproteins. Modest weight gain in young individuals induces hyperproinsulinemia and increases biomarkers of endothelial dysfunction, effects that may be partly outweighed by the lipid-lowering effects of PUFA. CLINICAL TRIAL REGISTRATION URL: http://ClinicalTrials.gov. Unique identifier: NCT01427140.
Resumo:
In 1952, Dwyer and coworkers began testing a series of metal complexes for potential inhibition of cancer cell proliferation in animals.[l] The complexes tested were unsuitable for such studies due to their high toxicity. Therefore, no further work was done on the project. However, in 1965, Rosenberg and coworkers revisited the possibility of potential metal-based drugs. Serendipitously, they discovered that cis-diamminedichloroplatinum(lI) (cisplatin) inhibits cell division in E. coli.[2] Further studies of this and other platinum compounds revealed inhibition of tumor cell lines sarcoma 180 and leukemia LI2l0 in mice.[l] Cisplatin was approved by the Food and Drug Administration in 1970 as a chemical chemotherapeutic agent in the treatment of cancer. The drug has primarily been used in the treatment of testicular and ovarian cancers, although the powerful chemotherapeutic properties of the compound indicate use against a variety of other cancers.[3] The toxicity of this compound, however, warrants the development of other metal-based potential antitumor agents. The success of cisplatin, a transition-metal-based chemotherapeutic, opened the doors to a host of research on the antitumor effects of other transition-metal complexes. Beginning in the 1970s, researchers looked to rhodium for potential use in antitumor complexes. Dirhodium complexes with bridging equatorial ligands (Figure I) were the primary focus for this research. The overwhelming majority of these complexes were dirhodium(II) carboxylate complexes, containing two rhodium(II) centers, four equatorial ligands in a lantero formation around the metal center, and an axial ligand on either end. The family of complexes in Figure 1 will be referred to as dirhodium(II) carboxylate complexes. The dirhodium centers are each d? with a metal-metal bond between them. Although d? atoms are paramagnetic, the two unpaired electrons pair to make the complex diamagnetic. The basic formula of the dirhodium(lI) carboxylate complexes is Rh?(RCOO)?(L)? with R being methyl, ethyl, propyl, or butyl groups and L being water or the solvent in which the complex was crystalized. Of these dirbodium(II) carboxylate complexes, our research focuses on Rb la and two other similar complexes Rh2 and Rh3 (Figure 2). Rh2 is an activated form of Rhla, with four acetonitrile groups in place of two of the bidentate acetate ligands. Rh3 is similar to Rhla, with trifluoromethyl groups in place of the methyl groups on the acetate ligands.
Resumo:
A filtragem de imagens visando a redução do ruído é uma tarefa muito importante em processamento de imagens, e encontra diversas aplicações. Para que a filtração seja eficiente, ela deve atenuar apenas o ruído na imagem, sem afetar estruturas importantes, como as bordas. Há na literatura uma grande variedade de técnicas propostas para filçtragem de imagens com preservação de bordas, com as mais variadas abordagens, deentrte as quais podem ser citadas a convolução com máscaras, modelos probabilísticos, redes neurais, minimização de funcionais e equações diferenciais parciais. A transformada wavelet é uma ferramenta matemática que permite a decomposição de sinais e imagens em múltiplas resoluções. Essa decomposição é chamada de representação em wavelets, e pode ser calculada atrravés de um algorítmo piramidal baseado em convoluções com filtros passa-bandas e passa-baixas. Com essa transformada, as bordas podem ser calculadas em múltiplas resoluções. Além disso, como filtros passa-baixas são utilizados na decomposição, a atenuação do ruído é um processo intrínseco à transformada. Várias técnicas baseadas na transformada wavelet têm sido propostas nos últimos anos, com resultados promissores. Essas técnicas exploram várias características da transformada wavelet, tais como a magnitude de coeficientes e sua evolução ao longo das escalas. Neste trabalho, essas características da transformada wavelet são exploradas para a obtenção de novas técnicas de filtragem com preservação das bordas.
Resumo:
o exame para o diagnóstico de doenças da laringe é usualmente realizado através da videolaringoscopia e videoestroboscopia. A maioria das doenças na laringe provoca mudanças na voz do paciente. Diversos índices têm sido propostos para avaliar quantitativamente a qualidade da voz. Também foram propostos vários métodos para classificação automática de patologias da laringe utilizando apenas a voz do paciente. Este trabalho apresenta a aplicação da Transformada Wavelet Packet e do algoritmo Best Basis [COI92] para a classificação automática de vozes em patológicas ou normais. Os resultados obtidos mostraram que é possível classificar a voz utilizando esta Transformada. Tem-se como principal conclusão que um classificador linear pode ser obtido ao se empregar a Transformada Wavelet Packet como extrator de características. O classificador é linear baseado na existência ou não de nós na decomposição da Transformada Wavelet Packet. A função Wavelet que apresentou os melhores resultados foi a sym1et5 e a melhor função custo foi a entropia. Este classificador linear separa vozes normais de vozes patológicas com um erro de classificação de 23,07% para falsos positivos e de 14,58%para falsos negativos.
Resumo:
Resumo não disponível.
Resumo:
A análise do sono está baseada na polissonogra a e o sinal de EEG é o mais importante. A necessidade de desenvolver uma análise automática do sono tem dois objetivos básicos: reduzir o tempo gasto na análise visual e explorar novas medidas quantitativas e suas relações com certos tipos de distúrbios do sono. A estrutura do sinal de EEG de sono está relacionada com a chamada microestrutura do sono, que é composta por grafoelementos. Um destes grafoelementos é o fuso de sono (spindles). Foi utilizado um delineamento transversal aplicado a um grupo de indivíduos normais do sexo masculino para testar o desempenho de um conjunto de ferramentas para a detecção automática de fusos. Exploramos a detecção destes fusos de sono através de procura direta, Matching Pursuit e uma rede neural que utiliza como "input"a transformada de Gabor (GT). Em comparação com a análise visual, o método utilizando a transformada de Gabor e redes neurais apresentou uma sensibilidade de 77% e especi cidade de 73%. Já o Matching Pursuit, apesar de mais demorado, se mostrou mais e ciente, apresentando sensibilidade de 81,2% e especi cidade de 85.2%.
Resumo:
O processamento de imagens tem sido amplamente utilizado para duas tarefas. Uma delas é o realce de imagens para a posterior visualização e a outra tarefa é a extração de informações para análise de imagens. Este trabalho apresenta um estudo sobre duas teorias multi-escalas chamadas de espaço de escala e transformada wavelet, que são utilizadas para a extração de informações de imagens. Um dos aspectos do espaço de escalas que tem sido amplamente discutido por diversos autores é a sua base (originalmente a gaussiana). Tem se buscado saber se a base gaussiana é a melhor, ou para quais casos ela é a melhor. Além disto, os autores têm procurado desenvolver novas bases, com características diferentes das pertencentes à gaussiana. De posse destas novas bases, pode-se compará-las com a base gaussiana e verificar onde cada base apresenta melhor desempenho. Neste trabalho, foi usada (i) a teoria do espaço de escalas, (ii) a teoria da transformada wavelet e (iii) as relações entre elas, a fim de gerar um método para criar novas bases para o espaço de escalas a partir de funções wavelets. O espaço de escala é um caso particular da transformada wavelet quando se usam as derivadas da gaussiana para gerar os operadores do espaço de escala. É com base nesta característica que se propôs o novo método apresentado. Além disto, o método proposto usa a resposta em freqüência das funções analisadas. As funções bases do espaço de escala possuem resposta em freqüência do tipo passa baixas. As funções wavelets, por sua vez, possuem resposta do tipo passa faixas Para obter as funções bases a partir das wavelets faz-se a integração numérica destas funções até que sua resposta em freqüência seja do tipo passa baixas. Algumas das funções wavelets estudadas não possuem definição para o caso bi-dimensional, por isso foram estudadas três formas de gerar funções bi-dimensionais a partir de funções unidimensionais. Com o uso deste método foi possível gerar dez novas bases para o espaço de escala. Algumas dessas novas bases apresentaram comportamento semelhante ao apresentado pela base gaussiana, outras não. Para as funções que não apresentaram o comportamento esperado, quando usadas com as definições originais dos operadores do espaço de escala, foram propostas novas definições para tais operadores (detectores de borda e bolha). Também foram geradas duas aplicações com o espaço de escala, sendo elas um algoritmo para a segmentação de cavidades cardíacas e um algoritmo para segmentação e contagem de células sanguíneas.
Resumo:
Este trabalho apresenta um sistema de classificação de voz disfônica utilizando a Transformada Wavelet Packet (WPT) e o algoritmo Best Basis (BBA) como redutor de dimensionalidade e seis Redes Neurais Artificiais (ANN) atuando como um conjunto de sistemas denominados “especialistas”. O banco de vozes utilizado está separado em seis grupos de acordo com as similaridades patológicas (onde o 6o grupo é o dos pacientes com voz normal). O conjunto de seis ANN foi treinado, com cada rede especializando-se em um determinado grupo. A base de decomposição utilizada na WPT foi a Symlet 5 e a função custo utilizada na Best Basis Tree (BBT) gerada com o BBA, foi a entropia de Shannon. Cada ANN é alimentada pelos valores de entropia dos nós da BBT. O sistema apresentou uma taxa de sucesso de 87,5%, 95,31%, 87,5%, 100%, 96,87% e 89,06% para os grupos 1 ao 6 respectivamente, utilizando o método de Validação Cruzada Múltipla (MCV). O poder de generalização foi medido utilizando o método de MCV com a variação Leave-One-Out (LOO), obtendo erros em média de 38.52%, apontando a necessidade de aumentar o banco de vozes disponível.
Resumo:
Radial glial cells (RGCs) in the ventricular neuroepithelium of the dorsal telencephalon are the progenitor cells for neocortical projection neurons and astrocytes. Here we showthatthe adherens junction proteins afadin and CDH2 are criticalforthe control of cell proliferation in the dorsal telencephalon and for the formation of its normal laminar structure. Inactivation of afadin or CDH2 in the dorsal telenceph-alon leads to a phenotype resembling subcortical band heterotopia, also known as “double cortex,” a brain malformation in which heterotopic gray matter is interposed between zones of white matter. Adherens junctions between RGCs are disrupted in the mutants, progenitor cells are widely dispersed throughout the developing neocortex, and their proliferation is dramatically increased. Major subtypes of neocortical projection neurons are generated, but their integration into cell layers is disrupted. Our findings suggest that defects in adherens junctions components in mice massively affects progenitor cell proliferation and leads to a double cortex-like phenotype.