979 resultados para Double Abcx Model
Resumo:
The aims of this study were to characterize the spatial distribution of neurodegeneration after status epilepticus (SE) induced by either systemic (S) or intrahippocampal (H) injection of pilocarpine (PILO), two models of temporal lobe epilepsy (TLE), using FluoroJade (FJ) histochemistry, and to evaluate the kinetics of FJ staining in the H-PILO model. Therefore, we measured the severity of behavioral seizures during both types of SE and also evaluated the FJ staining pattern at 12, 24, and 168 h (7 days) after the H-PILO insult. We found that the amount of FJ-positive (FJ+) area was greater in SE induced by S-PILO as compared to SE induced by H-PILO. After SE induced by H-PILO, we found more FJ+ cells in the hilus of the dentate gyrus (DG) at 12 h, in CA3 at 24 h, and in CA1 at 168 h. We found also no correlation between seizure severity and the number of FJ+ cells in the hippocampus. Co-localization studies of FJ+ cells with either neuronal-specific nuclear protein (NeuN) or glial fibrillary acidic protein (GFAP) labeling 24 h after H-PILO demonstrated spatially selective neurodegeneration. Double labeling with FJ and parvalbumin (PV) showed both FJ+/PV+ and FJ+/PV- cells in hippocampus and entorhinal cortex, among other areas. The current data indicate that FJ+ areas are differentially distributed in the two TLE models and that these areas are greater in the S-PILO than in the H-PILO model. There is also a selective kinetics of FJ+ cells in the hippocampus after SE induced by H-PILO, with no association with the severity of seizures, probably as a consequence of the extra-hippocampal damage. These data point to SE induced by H-PILO as a low-mortality model of TLE, with regional spatial and temporal patterns of FJ staining. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Neuropathic pain is a chronic disease resulting from dysfunction of the nervous system often due to peripheral nerve injury. Hypersensitivity to sensory Stimuli (mechanical, thermal or chemical) is a common source of pain in patients and ion channels involved in detecting these Stimuli are possible candidates for inducing and/or maintaining the pain. Transient receptor potential (TRP) channels expressed on nociceptors respond to different sensory stimuli and a few of them have been studied previously in the models of neuropathic pain. Using real-time PCR for quantification of all known TRP channels we identified several TRP channels, which have not been associated with nociception OF neuropathic pain before, to be expressed in the DRG and to be differentially regulated after spared nerve injury (SNI). Of all TRP channel members, TRPML3 showed the most dramatic change in animals exhibiting neuropathic pain behaviour compared to control animals. fit situ hybridisation showed a widespread increase of expression ill neurons of small, medium and large cell sizes, indicating expression ill multiple subtypes. Co-localisation of TRPML3 with CGRP, NF200 and IB4 staining confirmed a broad Subtype distribution. Expression studies during development showed that TRPML3 is all embryonic channel that is induced upon nerve injury in three different nerve injury models investigated. Thus. the current results link for the first time a re-expression of TRPML3 with the development of neuropathic pain conditions. In addition, decreased mRNA levels after SNI were seen for TRPM6, TRPM8, TRPV1, TRPA1, TRPC3, TRPC4 and TRPC5. (C) 2009 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Resumo:
Zinc is present in high concentration in many structures of the limbic circuitry, however the role of zinc as a neuromodulator in such synapses is stilt uncertain. In this work, we verified the effects of zinc chelation in an animal model of epileptogenesis induced by amygdala rapid kindling. The basolateral. amygdala was electrically stimulated ten times per day for 2 days. A single stimulus was applied on the third day. Stimulated animals received injections of PBS or the zinc chelator diethildythiocarbamate acid (DEDTC) before each stimulus series. Animals were monitored with video-EEG and were perfused 3 h after the last stimulus for subsequent neo-Timm and Ftuoro-Jade B analysis. Zinc chelation decreased the duration of both behavioral seizures and electrical after-discharges, and also decreased the EEG spikes frequency, without changing the progression of behavioral seizure severity. These results indicate that the zinc ion may have a facilitatory role during kindling progression. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The present study was designed to assess the hypothesis that dexamethasone (DEX) through the control of nitric oxide (NO) synthesis could regulate the release of vasopressin (AVP), which plays an important role in the regulation of arterial pressure and plasma osmolality. Endotoxemic shock was induced by intravenous (i.v.) injection of 1.5 mg/kg lipopolisaccharide (LPS) in male Wistar rats weighing 250-300 g. After LPS administration, a group of animals were treated with DEX (1.0 mg/kg of body weight), whereas saline-injected rats served as controls. The LPS administration induced a significant decrease in mean arterial pressure (MAP) with a concomitant increase in heart rate (HR) (Delta VMAP: -16.1 +/- 4.2 mm Hg; Delta VHR: 47.3 +/- 8.1 bpm). An increase in plasma AVP concentration occurred and was present for 2 h after LPS administration (11.1 +/- 0.9 pg/mL) returning close to basal levels thereafter and remaining unchanged until the end of the experiment. When LPS was combined with i.v. administration of a low dose of DEX, we observed an attenuation in the drop of MAP (Delta VMAP: -2.2 +/- 1.9 mm Hg) and a decrease in NO plasma concentration [NO] after LPS administration (1098.1 +/- 68.1 mu M) compared to [NO] after DEX administration (523.4 +/- 75.2 mu M). However, this attenuation in the drop of MAP was accompanied by a decrease in AVP plasma concentration (3.7 +/- 0.4 pg/mL). These data suggest that AVP does not participate in the recovery of MAP when DEX is administered in this endotoxemic shock model. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Historically, the cure rate model has been used for modeling time-to-event data within which a significant proportion of patients are assumed to be cured of illnesses, including breast cancer, non-Hodgkin lymphoma, leukemia, prostate cancer, melanoma, and head and neck cancer. Perhaps the most popular type of cure rate model is the mixture model introduced by Berkson and Gage [1]. In this model, it is assumed that a certain proportion of the patients are cured, in the sense that they do not present the event of interest during a long period of time and can found to be immune to the cause of failure under study. In this paper, we propose a general hazard model which accommodates comprehensive families of cure rate models as particular cases, including the model proposed by Berkson and Gage. The maximum-likelihood-estimation procedure is discussed. A simulation study analyzes the coverage probabilities of the asymptotic confidence intervals for the parameters. A real data set on children exposed to HIV by vertical transmission illustrates the methodology.
Resumo:
Cannabidiol (CBD), a Cannabis sativa constituent, may present a pharmacological profile similar to mood stabilizing drugs, in addition to anti-oxidative and neuroprotective properties. The present study aims to directly investigate the effects of CBD in an animal model of mania induced by D-amphetamine (D-AMPH). In the first model (reversal treatment), rats received saline or D-AMPH (2 mg/kg) once daily intraperitoneal (i.p.) for 14 days, and from the 8th to the 14th day, they were treated with saline or CBD (15, 30 or 60 mg/kg) i.p. twice a day. In the second model (prevention treatment), rats were pretreated with saline or CBD (15, 30, or 60 mg/kg) regime i.p. twice a day, and from the 8th to the 14th day, they also received saline or D-AMPH i.p. once daily. In the hippocampus CBD (15 mg/kg) reversed the D-AMPH-induced damage and increased (30 mg/kg) brain-derived neurotrophic factor (BDNF) expression. In the second experiment, CBD (30 or 60 mg/kg) prevented the D-AMPH-induced formation of carbonyl group in the prefrontal cortex. In the hippocampus and striatum the D-AMPH-induced damage was prevented by CBD (15, 30 or 60 mg/kg). At both treatments CBD did not present any effect against D-AMPH-induced hyperactivity. In conclusion, we could not observe effects on locomotion, but CBD protect against D-AMPH-induced oxidative protein damage and increased BDNF levels in the reversal model and these effects vary depending on the brain regions evaluated and doses of CBD administered.
Resumo:
Cannabis sativa, the most widely used illicit drug, has profound effects on levels of anxiety in animals and humans. Although recent studies have helped provide a better understanding of the neurofunctional correlates of these effects, indicating the involvement of the amygdala and cingulate cortex, their reciprocal influence is still mostly unknown. In this study dynamic causal modelling (DCM) and Bayesian model selection (BMS) were used to explore the effects of pure compounds of C. sativa [600 mg of cannabidiol (CBD) and 10 mg Delta(9)-tetrahydrocannabinol (Delta(9)-THC)] on prefrontal-subcortical effective connectivity in 15 healthy subjects who underwent a double-blind randomized, placebo-controlled fMRI paradigm while viewing faces which elicited different levels of anxiety. In the placebo condition, BMS identified a model with driving inputs entering via the anterior cingulate and forward intrinsic connectivity between the amygdala and the anterior cingulate as the best fit. CBD but not Delta(9)-THC disrupted forward connectivity between these regions during the neural response to fearful faces. This is the first study to show that the disruption of prefrontal-subocrtical connectivity by CBD may represent neurophysiological correlates of its anxiolytic properties.
Resumo:
The chronic mild stress (CMS) model has been used as an animal model of depression which induces anhedonic behavior in rodents. The present study was aimed to evaluate the behavioral and physiological effects of administration of P-carboline harmine in rats exposed to CMS Procedure. To this aim, after 40 days of exposure to CMS procedure, rats were treated with harmine (15 mg/kg/day) for 7 days. In this study, sweet food consumption, adrenal gland weight, adrenocorticotrophin hormone (ACTH) levels, and hippocampal brain-derived-neurotrophic factor (BDNF) protein levels were assessed. Our findings demonstrated that chronic stressful situations induced anhedonia, hypertrophy of adrenal gland weight, increase ACTH circulating levels in rats and increase BDNF protein levels. Interestingly, treatment with harmine reversed anhedonia, the increase of adrenal gland weight, normalized ACTH circulating levels and BDNF protein levels. Finally, these findings further support the hypothesis that harmine could be a new pharmacological tool for the treatment of depression. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Escitalopram is a highly selective inhibitor of serotonin re-uptake that is used to treat anxiety disorders. In the present study, we investigated the effects of acute, sub-chronic ( 14 days) and chronic ( 21 days) administration of escitalopram ( 2, 4 and 8 mg/kg, P0) on the performance of rats in the elevated T-maze. For comparison, imipramine ( 15 mg/ kg, P0) was also studied. The apparatus is made of three elevated arms of equal dimension, one enclosed transversal to the two open arms. Inhibitory avoidance of the open arms, trained in the enclosed arm, has been related to generalised anxiety disorder, while one-way escape from one open arm, to panic disorder. After acute administration, the three doses of escitalopram impaired avoidance ( anxiolytic effect), while imipramine was ineffective. Escape was unaffected by either drug. With sub-chronic administration, both drugs were ineffective on either avoidance or escape. After chronic treatment, avoidance was impaired by imipramine and by the two highest doses of escitalopram. In addition, escape was impaired (panicolytic effect) by imipramine and by the highest dose of escitalopram. Locomotion measured in a square arena was increased by the three doses of escitalopram, given chronically. Therefore, both imipramine and escitalopram had anxiolytic and panicolytic-like effects after chronic administration, but acutely only escitalopram decreased anxiety. Since no such effect was observed following subchronic administration, it is likely that the mechanisms of the early and late anxiolytic actions of escitalopram are different.
Resumo:
Context: Ketamine evokes psychosislike symptoms, and its primary action is to impair N-methyl-D-aspartate glutamate receptor neurotransmission, but it also induces secondary increases in glutamate release. Objectives: To identify the sites of action of ketamine in inducing symptoms and to determine the role of increased glutamate release using the glutamate release inhibitor lamotrigine. Design: Two experiments with different participants were performed using a double-blind, placebo-controlled, randomized, crossover, counterbalanced-order design. In the first experiment, the effect of intravenous ketamine hydrochloride on regional blood oxygenation level dependent (BOLD) signal and correlated symptoms was compared with intravenous saline placebo. In the second experiment, pretreatment with lamotrigine was compared with placebo to identify which effects of ketamine are mediated by increased glutamate release. Setting: Wellcome Trust Clinical Research Facility, Manchester, England. Participants: Thirty-three healthy, right-handed men were recruited by advertisements. Interventions: In experiment 1, participants were given intravenous ketamine (1-minute bolus of 0.26 mg/ kg, followed by a maintenance infusion of 0.25 mg/ kg/ h for the remainder of the session) or placebo (0.9% saline solution). In experiment 2, participants were pretreated with 300 mg of lamotrigine or placebo and then were given the same doses of ketamine as in experiment 1. Main Outcome Measures: Regional BOLD signal changes during ketamine or placebo infusion and Brief Psychiatric Rating Scale and Clinician- Administered Dissociative States Scale scores. Results: Ketamine induced a rapid, focal, and unexpected decrease in ventromedial frontal cortex, including orbitofrontal cortex and subgenual cingulate, which strongly predicted its dissociative effects and increased activity in mid- posterior cingulate, thalamus, and temporal cortical regions (r= 0.90). Activations correlated with Brief Psychiatric Rating Scale psychosis scores. Lamotrigine pretreatment prevented many of the BOLD signal changes and the symptoms. Conclusions: These 2 changes may underpin 2 fundamental processes of psychosis: abnormal perceptual experiences and impaired cognitive- emotional evaluation of their significance. The results are compatible with the theory that the neural and subjective effects of ketamine involve increased glutamate release.
Resumo:
Constant light (LL) is associated with high incidence of colon cancer. MLT supplementation was related to the significant control of preneoplastic patterns. We sought to analyze preneoplastic patterns in colon tissue from animals exposed to LL environment (14 days; 300 lx), MLT-supplementation (10 mg/kg/day) and DMH-treatment (1,2 dimethylhydrazine; 125 mg/kg). Rodents were sacrificed and MLT serum levels were measured by radioimmunoassay. Our results indicated that LL induced ACF development (p < 0.001) with a great potential to increase the number of CD133(+) and CD68(+) cells (p < 0.05 and p < 0.001). LL also increased the proliferative process (PCNA-Li; p < 0.001) as well as decreased caspase-3 protein (p < 0.001), related to higher COX-2 protein expression (p < 0.001) within pericryptal colonic stroma (PCCS). However, MLT-supplementation controlled the development of dysplastic ACF (p < 0.001) diminishing preneoplastic patterns into PCCS as CD133 and CD68 (p < 0.05 and p < 0.001). These events were relative to decreased PCNA-Li index and higher expression of caspase-3 protein. Thus, MLT showed a great potential to control the preneoplastic patterns induced by LL. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Neural maturation involves diverse interaction and signaling mechanisms that are essential to the development of the nervous system. However, little is known about the development of neurons in heterotopic brain tissue in the lung, a rare abnormality observed in malformed babies and fetuses. The aim of this study was to identify the neurons and to investigate their maturation in experimental brain tissue heterotopia during fetal and neonatal periods. The fetuses from 24 pregnant female Swiss mice were used to induce brain tissue heterotopia on the 15th gestational day. Briefly, the brain of one fetus of each dam was extracted, disaggregated, and injected into the right hemithorax of siblings. Six of these fetuses with pulmonary brain tissue implantation were collected on the 18th gestational day (group E18), and six others were collected on the 8th postnatal day (group P8). The brain of each fetus from dams not submitted to any experimental procedure was collected on the 18th gestational day (group CE18) and on the 8th postnatal day (group CP8) to serve as a control for neuronal quantitation and maturation. Immunohistochemical staining of NeuN was used to assess neuron quantity and maturation. The NeuN labeling index was greater in the postnatal period than in the fetal period for the experimental and control groups (138 > E18 and CP8 > CE18), although there were fewer neurons in experimental than in control groups (P8 < CP8 and El 8 < CE1 8) (P < 0.005). These results indicate that fetal neuroblasts/neurons not only survive a dramatic event such as mechanical disaggregation, in the same way as it happens in human cases, but also they retain their development in heterotopia, irrespective of local tissue influences.
beta 1 Integrin and VEGF expression in an experimental model of brain tissue heterotopia in the lung
Resumo:
Integrins and vascular endothelial growth factor (VEGF) are crucially involved in interaction, proliferation, migration, and survival of the cells. However, there is no report in the literature about beta 1 integrin and VEGF expression in heterotopic brain tissue. The aim of this study was to assess beta 1 integrin and VEGF expression in experimental brain tissue heterotopia in the lung during both fetal and neonatal periods. Twenty-four pregnant female Swiss mice were used to induce brain tissue heterotopia on the 15th gestational day. Briefly, the brain of one fetus of each dam was extracted, disaggregated, and injected into the right hemithorax of siblings. Six of these fetuses with pulmonary brain tissue implantation were collected on the 18th gestational day (group E18) and six other on the eighth postnatal day (group P8). Immunohistochemistry of the fetal trunks showed implantation of glial fibrillary acidic protein- and neuronal nuclei-positive heterotopic brain tissue, which were also positive for beta 1 integrin and VEGF in both groups E18 and P8. These results indicate that brain tissue heterotopia during fetal and postnatal period is able to complete integration with the lung tissue as well as to induce vascular proliferation which are the necessary steps for a successful implantation.