959 resultados para Distributed Material Flow Control
Resumo:
In this work, bromelain was recovered from ground pineapple stem and rind by means of precipitation with alcohol at low temperature. Bromelain is the name of a group of powerful protein-digesting, or proteolytic, enzymes that are particularly useful for reducing muscle and tissue inflammation and as a digestive aid. Temperature control is crucial to avoid irreversible protein denaturation and consequently to improve the quality of the enzyme recovered. The process was carried out alternatively in two fed-batch pilot tanks: a glass tank and a stainless steel tank. Aliquots containing 100 mL of pineapple aqueous extract were fed into the tank. Inside the jacketed tank, the protein was exposed to unsteady operating conditions during the addition of the precipitating agent (ethanol 99.5%) because the dilution ratio "aqueous extract to ethanol" and heat transfer area changed. The coolant flow rate was manipulated through a variable speed pump. Fine tuned conventional and adaptive PID controllers were on-line implemented using a fieldbus digital control system. The processing performance efficiency was enhanced and so was the quality (enzyme activity) of the product.
Resumo:
Kirjallisuusarvostelu
Resumo:
Studying testis is complex, because the tissue has a very heterogeneous cell composition and its structure changes dynamically during development. In reproductive field, the cell composition is traditionally studied by morphometric methods such as immunohistochemistry and immunofluorescence. These techniques provide accurate quantitative information about cell composition, cell-cell association and localization of the cells of interest. However, the sample preparation, processing, staining and data analysis are laborious and may take several working days. Flow cytometry protocols coupled with DNA stains have played an important role in providing quantitative information of testicular cells populations ex vivo and in vitro studies. Nevertheless, the addition of specific cells markers such as intracellular antibodies would allow the more specific identification of cells of crucial interest during spermatogenesis. For this study, adult rat Sprague-Dawley rats were used for optimization of the flow cytometry protocol. Specific steps within the protocol were optimized to obtain a singlecell suspension representative of the cell composition of the starting material. Fixation and permeabilization procedure were optimized to be compatible with DNA stains and fluorescent intracellular antibodies. Optimization was achieved by quantitative analysis of specific parameters such as recovery of meiotic cells, amount of debris and comparison of the proportions of the various cell populations with already published data. As a result, a new and fast flow cytometry method coupled with DNA stain and intracellular antigen detection was developed. This new technique is suitable for analysis of population behavior and specific cells during postnatal testis development and spermatogenesis in rodents. This rapid protocol recapitulated the known vimentin and γH2AX protein expression patterns during rodent testis ontogenesis. Moreover, the assay was applicable for phenotype characterization of SCRbKO and E2F1KO mouse models.
Resumo:
Liberalization of electricity markets has resulted in a competed Nordic electricity market, in which electricity retailers play a key role as electricity suppliers, market intermediaries, and service providers. Although these roles may remain unchanged in the near future, the retailers’ operation may change fundamentally as a result of the emerging smart grid environment. Especially the increasing amount of distributed energy resources (DER), and improving opportunities for their control, are reshaping the operating environment of the retailers. This requires that the retailers’ operation models are developed to match the operating environment, in which the active use of DER plays a major role. Electricity retailers have a clientele, and they operate actively in the electricity markets, which makes them a natural market party to offer new services for end-users aiming at an efficient and market-based use of DER. From the retailer’s point of view, the active use of DER can provide means to adapt the operation to meet the challenges posed by the smart grid environment, and to pursue the ultimate objective of the retailer, which is to maximize the profit of operation. This doctoral dissertation introduces a methodology for the comprehensive use of DER in an electricity retailer’s short-term profit optimization that covers operation in a variety of marketplaces including day-ahead, intra-day, and reserve markets. The analysis results provide data of the key profit-making opportunities and the risks associated with different types of DER use. Therefore, the methodology may serve as an efficient tool for an experienced operator in the planning of the optimal market-based DER use. The key contributions of this doctoral dissertation lie in the analysis and development of the model that allows the retailer to benefit from profit-making opportunities brought by the use of DER in different marketplaces, but also to manage the major risks involved in the active use of DER. In addition, the dissertation introduces an analysis of the economic potential of DER control actions in different marketplaces including the day-ahead Elspot market, balancing power market, and the hourly market of Frequency Containment Reserve for Disturbances (FCR-D).
Resumo:
Press forming is nowadays one of the most common industrial methods in use for producing deeper trays from paperboard. Demands for material properties like recyclability and sustainability have increased also in the packaging industry, but there are still limitations related to the formability of paperboard. A majority of recent studies have focused on material development, but the potential of the package manufacturing process can also be improved by the development of tooling and process control. In this study, advanced converting tools (die cutting tools and the press forming mould) are created for production scale paperboard tray manufacturing. Also monitoring methods that enable the production of paperboard trays with enhanced quality, and can be utilized in process control are developed. The principles for tray blank preparation, including creasing pattern and die cutting tool design are introduced. The mould heating arrangement and determination of mould clearance are investigated to improve the quality of the press formed trays. The effect of the spring back of the tray walls on the tray dimensions can be managed by adjusting the heat-related process parameters and estimating it at the mould design stage. This enables production speed optimization as the process parameters can be adjusted more freely. Real-time monitoring of pressing force by using multiple force sensors embedded in the mould structure can be utilized in the evaluation of material characteristics on a modified production machinery. Comprehensive process control can be achieved with a combination of measurement of the outer dimensions of the trays and pressing force monitoring. The control method enables detection of defects and tracking changes in the material properties. The optimized converting tools provide a basis for effective operation of the control system.
Resumo:
The awareness and concern of our environment together with legislation have set more and more tightening demands for energy efficiency of non-road mobile machinery (NRMM). Integrated electro-hydraulic energy converter (IEHEC) has been developed in Lappeenranta University of Technology (LUT). The elimination of resistance flow, and the recuperation of energy makes it very efficient alternative. The difficulties of IEHEC machine to step to the market has been the requirement of one IEHEC machine per one actuator. The idea is to switch IEHEC between two actuators of log crane using fast on/off valves. The control system architecture is introduced. The system has been simulated in co-simulation using two different software. The simulated responses of pump-controlled system is compared to the responses of the conventional valve-controlled system.
Resumo:
The objectives of this master’s thesis were to understand the importance of bubbling fluidized bed (BFB) conditions and to find out how digital image processing and acoustic emission technology can help in monitoring the bed quality. An acoustic emission (AE) measurement system and a bottom ash camera system were evaluated in acquiring information about the bed conditions. The theory part of the study describes the fundamentals of BFB boiler and evaluates the characteristics of bubbling bed. Causes and effects of bed material coarsening are explained. The ways and methods to monitor the behaviour of BFB are determined. The study introduces the operating principles of AE technology and digital image processing. The empirical part of the study describes an experimental arrangement and results of a case study at an industrial BFB boiler. Sand consumption of the boiler was reduced by optimization of bottom ash handling and sand feeding. Furthermore, data from the AE measurement system and the bottom ash camera system was collected. The feasibility of these two systems was evaluated. The particle size of bottom ash and the changes in particle size distribution were monitored during the test period. Neither of the systems evaluated was ready to serve in bed quality control accurately or fast enough. Particle size distributions according to the bottom ash camera did not correspond to the results of manual sieving. Comprehensive interpretation of the collected AE data requires much experience. Both technologies do have potential and with more research and development they may enable acquiring reliable and real-time information about the bed conditions. This information could help to maintain disturbance-free combustion process and to optimize bottom ash handling system.
Resumo:
This study was an investigation of individual and organizational factors, as perceived by front-line vocational service workers from Adult Rehabilitation Centres (ARC Industries) for mentally retarded adults. The specific variables which were measured included role conflict/role ambiguity (role factors), internal/external locus of control (individual differences), job satisfaction with work and supervision (job attitudes) and participation in deci~ion making (organizational factor). The exploration of these constructs was conducted by means of self-report questionnaires which were completed by sixty-nine out of a total of ninety front-line employees. The surveys were distributed in booklet form to nine distinct rehabilitation facilities from St. Catharines, West Lincoln, Greater Niagara, Port Colborne, WeIland, Fort Erie, Hamilton, Guelph and Brantford. The survey data was evaluated by the statisti.cal Package for the Social Sciences (SPSS) which used the Pearson Product Moment Correlation procedure and a compar~son of means test. A comparison of correlation coefficients test was also conducted. This statistical procedure was calculated mathematically. The results obtained from the statistical evaluation confirmed the prediction that self-reported measures of participation in decision making and satisfaction (work and supervision) would be negatively correlated with role conflict and role ambiguity. As well, the speculation that perceived satisfaction (work and supervision) would be positively correlated with participation in decision making was empirically supported. Internal and external locus of control did not contribute to a significant difference in r~sponses to role perceptions (conflict and ambiguity) , satisfaction (work and supervision) or the correlational relationship between participation in decision making and satisfaction (work and supervision). Overall, the findings from this study substantiated the importance of examining employee perceptions in the workplace and the interrelationships among individual and organizational variables. This research was considered a contribution to the general area of occupational stress and to the study of individuals in work organizations.
Resumo:
Flow injection analysis (FIA) was applied to the determination of both chloride ion and mercury in water. Conventional FIA was employed for the chloride study. Investigations of the Fe3 +/Hg(SCN)2/CI-,450 nm spectrophotometric system for chloride determination led to the discovery of an absorbance in the 250-260 nm region when Hg(SCN)2 and CI- are combined in solution, in the absence of iron(III). Employing an in-house FIA system, absorbance observed at 254 nm exhibited a linear relation from essentially 0 - 2000 Jlg ml- 1 injected chloride. This linear range spanning three orders of magnitude is superior to the Fe3+/Hg(SCN)2/CI- system currently employed by laboratories worldwide. The detection limit obtainable with the proposed method was determin~d to be 0.16 Jlg ml- 1 and the relative standard deviation was determined to be 3.5 % over the concentration range of 0-200 Jig ml- 1. Other halogen ions were found to interfere with chloride determination at 254 nm whereas cations did not interfere. This system was successfully applied to the determination of chloride ion in laboratory water. Sequential injection (SI)-FIA was employed for mercury determination in water with the PSA Galahad mercury amalgamation, and Merlin mercury fluorescence detection systems. Initial mercury in air determinations involved injections of mercury saturated air directly into the Galahad whereas mercury in water determinations involved solution delivery via peristaltic pump to a gas/liquid separator, after reduction by stannous chloride. A series of changes were made to the internal hardware and valving systems of the Galahad mercury preconcentrator. Sequential injection solution delivery replaced the continuous peristaltic pump system and computer control was implemented to control and integrate all aspects of solution delivery, sample preconcentration and signal processing. Detection limits currently obtainable with this system are 0.1 ng ml-1 HgO.
Resumo:
The interaction between local and reflexive control of skin blood flow (SkBF) is unclear. This thesis isolated the roles of rectal (Tre) and local (Tloc) temperature on forearm SkBF regulation at normal and elevated body temperatures, and to investigate the interaction between local and reflexive SkBF control. While either normothermic (Tre ~37.0°C) or hyperthermic (∆Tre +1.1°C), SkBF was assessed on the dorsal aspect of each forearm in 10 participants while Tloc was manipulated in an A-B-A-B fashion between neutral (33.0°C) and hot (38.5°C). Finally, local heating to 44°C was performed to elicit maximal SkBF. Data are presented as a percentage of maximal cutaneous vascular conductance (CVC), calculated as laser-Doppler flux divided by mean arterial pressure. Tloc manipulations performed during normothermia had significantly greater effects on CVC than during hyperthermia. The decreased modification to SkBF from the Tloc changes during hyperthermia suggests that strong reflexive vasodilation attenuates local SkBF control mechanisms.
Resumo:
Although reductions in cerebral blood flow (CBF) may be implicated in the development of central fatigue during environmental stress, the contribution from hypocapnia-induced reductions in CBF versus reductions in CBF per se has yet to be isolated. The current research program examined the influence of CBF, with and without consequent hypocapnia, on neuromuscular responses during hypoxia and passive heat stress. To this end, neuromuscular responses, as indicated by motor evoked potentials (MEP), maximal M-wave (Mmax) and cortical voluntary activation (cVA) of the flexor carpi radialis muscle during isometric wrist flexion, was assessed in three separate projects: 1) hypocapnia, independent of concomitant reductions in CBF; 2) altered CBF during severe hypoxia and; 3) thermal hyperpnea-mediated reductions in CBF, independent of hypocapnia. All projects employed a custom-built dynamic end-tidal forcing system to control end-tidal PCO2 (PETCO2), independent of the prevailing environmental conditions, and cyclooxygenase inhibition using indomethacin (Indomethacin, 1.2 mg·Kg-1) to selectively reduce CBF (estimated using transcranial Doppler ultrasound) without changes in PETCO2. A primary finding of the present research program is that the excitability of the corticospinal tract is inherently sensitive to changes in PaCO2, as demonstrated by a 12% increase in MEP amplitude in response to moderate hypocapnia. Conversely, CBF mediated reductions in cerebral O2 delivery appear to decrease corticospinal excitability, as indicated by a 51-64% and 4% decrease in MEP amplitude in response to hypoxia and passive heat stress, respectively. The collective evidence from this research program suggests that impaired voluntary activation is associated with reductions in CBF; however, it must be noted that changes in cVA were not linearly correlated with changes in CBF. Therefore, other factors independent of CBF, such as increased perception of effort, distress or discomfort, may have contributed to the reductions in cVA. Despite the functional association between reductions in CBF and hypocapnia, both variables have distinct and independent influence on the neuromuscular system. Therefore, future studies should control or acknowledge the separate mechanistic influence of these two factors.
Resumo:
Tesis (Maestría en Ciencias de la Ingeniería Eléctrica con Especialidad en Control) UANL
Resumo:
Tesis (Maestro en Ciencias de la Administración con Especialidad en Producción y Calidad) - U.A.N.L, 2001
Resumo:
La Fibrose Kystique (FK) est une maladie dégénérative qui entraine une dégénération des poumons dû au problème de clairance mucociliaire (CMC). Le volume de surface liquide (SL) couvrant les cellules pulmonaires est essentiel à la clairance de mucus et au combat contre les infections. Les nucléotides extracellulaires jouent un rôle important dans la CMC des voies aériennes, en modifiant le volume de la SL pulmonaire. Cependant, les mécanismes du relâchement de l’ATP et de leurs déplacements à travers la SL, restent inconnus. Des études ultérieures démontrent que l’exocytose d’ATP mécano-sensible et Ca2+-dépendant, dans les cellules A549, est amplifié par les actions synergétiques autocrine/paracrine des cellules avoisinantes. Nous avions comme but de confirmer la présence de la boucle purinergique dans plusieurs modèles de cellules épithéliales et de développer un système nous permettant d’observer directement la SL. Nous avons démontrés que la boucle purinergique est fonctionnelle dans les modèles de cellules épithéliales examinés, mis appart les cellules Calu-3. L’utilisation de modulateur de la signalisation purinergique nous a permis d’observer que le relâchement d’ATP ainsi que l’augmentation du [Ca2+]i suivant un stress hypotonique, sont modulés par le biais de cette boucle purinergique et des récepteurs P2Y. De plus, nous avons développé un système de microscopie qui permet d’observer les changements de volume de SL en temps réel. Notre système permet de contrôler la température et l’humidité de l’environnement où se trouvent les cellules, reproduisant l’environnement pulmonaire humain. Nous avons démontré que notre système peut identifier même les petits changements de volume de SL.