960 resultados para Discrete Data Models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Comparison of the Management Models of Protected Areas between China and the African South Region allows reading and evaluating the similarities and differences in the use of management model as a management tool for protected areas in China and South African Region. Specifically, some positive and negative features of the management approaches for the two regions. Secondary data was collected from various related literature such as policy documents, students‟ dissertations/thesis, scientific articles and magazines. Based on the method above, the study found out that China's first nature reserve was the Dingus Mountain Nature Reserve in Zhaoqing, Guangdong province established in 1956. By the end of 2005, about 2,349 nature reserves of various kinds were set up throughout the country, covering a total area of 149.95 million ha and accounting for 15 percent of the total land territory. The study further found that Southern Africa has approximately 4,390 protected areas out of 11487920 total land areas and Eastern Africa has approximately 1838144 protected areas, which is equivalent to 15.0% of the total land areas. South Africa in this region had its first declared natural park in 1926 after Paul Kruger (a war hero) had alerted the authorities of the extinguishing threat of some animal species of region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a review of methodology for semi-supervised modeling with kernel methods, when the manifold assumption is guaranteed to be satisfied. It concerns environmental data modeling on natural manifolds, such as complex topographies of the mountainous regions, where environmental processes are highly influenced by the relief. These relations, possibly regionalized and nonlinear, can be modeled from data with machine learning using the digital elevation models in semi-supervised kernel methods. The range of the tools and methodological issues discussed in the study includes feature selection and semisupervised Support Vector algorithms. The real case study devoted to data-driven modeling of meteorological fields illustrates the discussed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the application of normal theory methods to the estimation and testing of a general type of multivariate regressionmodels with errors--in--variables, in the case where various data setsare merged into a single analysis and the observable variables deviatepossibly from normality. The various samples to be merged can differ on the set of observable variables available. We show that there is a convenient way to parameterize the model so that, despite the possiblenon--normality of the data, normal--theory methods yield correct inferencesfor the parameters of interest and for the goodness--of--fit test. Thetheory described encompasses both the functional and structural modelcases, and can be implemented using standard software for structuralequations models, such as LISREL, EQS, LISCOMP, among others. An illustration with Monte Carlo data is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we study the disability transition probabilities (as well as the mortalityprobabilities) due to concurrent factors to age such as income, gender and education. Althoughit is well known that ageing and socioeconomic status influence the probability ofcausing functional disorders, surprisingly little attention has been paid to the combined effectof those factors along the individuals' life and how this affects the transition from one degreeof disability to another. The assumption that tomorrow's disability state is only a functionof the today's state is very strong, since disability is a complex variable that depends onseveral other elements than time. This paper contributes into the field in two ways: (1) byattending the distinction between the initial disability level and the process that leads tohis course (2) by addressing whether and how education, age and income differentially affectthe disability transitions. Using a Markov chain discrete model and a survival analysis, weestimate the probability by year and individual characteristics that changes the state of disabilityand the duration that it takes its progression in each case. We find that people withan initial state of disability have a higher propensity to change and take less time to transitfrom different stages. Men do that more frequently than women. Education and incomehave negative effects on transition. Moreover, we consider the disability benefits associatedto those changes along different stages of disability and therefore we offer some clues onthe potential savings of preventive actions that may delay or avoid those transitions. Onpure cost considerations, preventive programs for improvement show higher benefits thanthose for preventing deterioration, and in general terms, those focussing individuals below65 should go first. Finally the trend of disability in Spain seems not to change among yearsand regional differences are not found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Models incorporating more realistic models of customer behavior, as customers choosing froman offer set, have recently become popular in assortment optimization and revenue management.The dynamic program for these models is intractable and approximated by a deterministiclinear program called the CDLP which has an exponential number of columns. However, whenthe segment consideration sets overlap, the CDLP is difficult to solve. Column generationhas been proposed but finding an entering column has been shown to be NP-hard. In thispaper we propose a new approach called SDCP to solving CDLP based on segments and theirconsideration sets. SDCP is a relaxation of CDLP and hence forms a looser upper bound onthe dynamic program but coincides with CDLP for the case of non-overlapping segments. Ifthe number of elements in a consideration set for a segment is not very large (SDCP) can beapplied to any discrete-choice model of consumer behavior. We tighten the SDCP bound by(i) simulations, called the randomized concave programming (RCP) method, and (ii) by addingcuts to a recent compact formulation of the problem for a latent multinomial-choice model ofdemand (SBLP+). This latter approach turns out to be very effective, essentially obtainingCDLP value, and excellent revenue performance in simulations, even for overlapping segments.By formulating the problem as a separation problem, we give insight into why CDLP is easyfor the MNL with non-overlapping considerations sets and why generalizations of MNL posedifficulties. We perform numerical simulations to determine the revenue performance of all themethods on reference data sets in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the role of learning by private agents and the central bank(two-sided learning) in a New Keynesian framework in which both sides of the economyhave asymmetric and imperfect knowledge about the true data generating process. Weassume that all agents employ the data that they observe (which may be distinct fordifferent sets of agents) to form beliefs about unknown aspects of the true model ofthe economy, use their beliefs to decide on actions, and revise these beliefs througha statistical learning algorithm as new information becomes available. We study theshort-run dynamics of our model and derive its policy recommendations, particularlywith respect to central bank communications. We demonstrate that two-sided learningcan generate substantial increases in volatility and persistence, and alter the behaviorof the variables in the model in a significant way. Our simulations do not convergeto a symmetric rational expectations equilibrium and we highlight one source thatinvalidates the convergence results of Marcet and Sargent (1989). Finally, we identifya novel aspect of central bank communication in models of learning: communicationcan be harmful if the central bank's model is substantially mis-specified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth of pharmaceutical expenditure and its prediction is a major concern for policy makers and health care managers. This paper explores different predictive models to estimate future drug expenses, using demographic and morbidity individual information from an integrated healthcare delivery organization in Catalonia for years 2002 and 2003. The morbidity information consists of codified health encounters grouped through the Clinical Risk Groups (CRGs). We estimate pharmaceutical costs using several model specifications, and CRGs as risk adjusters, providing an alternative way of obtaining high predictive power comparable to other estimations of drug expenditures in the literature. These results have clear implications for the use of risk adjustment and CRGs in setting the premiums for pharmaceutical benefits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The first generation models of currency crises have often been criticized because they predict that, in the absence of very large triggering shocks, currency attacks should be predictable and lead to small devaluations. This paper shows that these features of first generation models are not robust to the inclusion of private information. In particular, this paper analyzes a generalization of the Krugman-Flood-Garber (KFG) model, which relaxes the assumption that all consumers are perfectly informed about the level of fundamentals. In this environment, the KFG equilibrium of zero devaluation is only one of many possible equilibria. In all the other equilibria, the lack of perfect information delays the attack on the currency past the point at which the shadow exchange rate equals the peg, giving rise to unpredictable and discrete devaluations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We evaluate conditional predictive densities for U.S. output growth and inflationusing a number of commonly used forecasting models that rely on a large number ofmacroeconomic predictors. More specifically, we evaluate how well conditional predictive densities based on the commonly used normality assumption fit actual realizationsout-of-sample. Our focus on predictive densities acknowledges the possibility that, although some predictors can improve or deteriorate point forecasts, they might have theopposite effect on higher moments. We find that normality is rejected for most modelsin some dimension according to at least one of the tests we use. Interestingly, however,combinations of predictive densities appear to be correctly approximated by a normaldensity: the simple, equal average when predicting output growth and Bayesian modelaverage when predicting inflation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examine the effects of extracting monetary policy disturbances with semi-structural and structural VARs, using data generated bya limited participation model under partial accommodative and feedback rules. We find that, in general, misspecification is substantial: short run coefficients often have wrong signs; impulse responses and variance decompositions give misleadingrepresentations of the dynamics. Explanations for the results and suggestions for macroeconomic practice are provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the advancement of phylogenetic methods to estimate speciation and extinction rates, their power can be limited under variable rates, in particular for clades with high extinction rates and small number of extant species. Fossil data can provide a powerful alternative source of information to investigate diversification processes. Here, we present PyRate, a computer program to estimate speciation and extinction rates and their temporal dynamics from fossil occurrence data. The rates are inferred in a Bayesian framework and are comparable to those estimated from phylogenetic trees. We describe how PyRate can be used to explore different models of diversification. In addition to the diversification rates, it provides estimates of the parameters of the preservation process (fossilization and sampling) and the times of speciation and extinction of each species in the data set. Moreover, we develop a new birth-death model to correlate the variation of speciation/extinction rates with changes of a continuous trait. Finally, we demonstrate the use of Bayes factors for model selection and show how the posterior estimates of a PyRate analysis can be used to generate calibration densities for Bayesian molecular clock analysis. PyRate is an open-source command-line Python program available at http://sourceforge.net/projects/pyrate/.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This chapter highlights the problems that structural methods and SVAR approaches have when estimating DSGE models and examining their ability to capture important features of the data. We show that structural methods are subject to severe identification problems due, in large part, to the nature of DSGE models. The problems can be patched up in a number of ways but solved only if DSGEs are completely reparametrized or respecified. The potential misspecification of the structural relationships give Bayesian methods an hedge over classical ones in structural estimation. SVAR approaches may face invertibility problems but simple diagnostics can help to detect and remedy these problems. A pragmatic empirical approach ought to use the flexibility of SVARs against potential misspecificationof the structural relationships but must firmly tie SVARs to the class of DSGE models which could have have generated the data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Customer choice behavior, such as 'buy-up' and 'buy-down', is an importantphe-nomenon in a wide range of industries. Yet there are few models ormethodologies available to exploit this phenomenon within yield managementsystems. We make some progress on filling this void. Specifically, wedevelop a model of yield management in which the buyers' behavior ismodeled explicitly using a multi-nomial logit model of demand. Thecontrol problem is to decide which subset of fare classes to offer ateach point in time. The set of open fare classes then affects the purchaseprobabilities for each class. We formulate a dynamic program todetermine the optimal control policy and show that it reduces to a dynamicnested allocation policy. Thus, the optimal choice-based policy caneasily be implemented in reservation systems that use nested allocationcontrols. We also develop an estimation procedure for our model based onthe expectation-maximization (EM) method that jointly estimates arrivalrates and choice model parameters when no-purchase outcomes areunobservable. Numerical results show that this combined optimization-estimation approach may significantly improve revenue performancerelative to traditional leg-based models that do not account for choicebehavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When dealing with the design of service networks, such as healthand EMS services, banking or distributed ticket selling services, thelocation of service centers has a strong influence on the congestion ateach of them, and consequently, on the quality of service. In this paper,several models are presented to consider service congestion. The firstmodel addresses the issue of the location of the least number of single--servercenters such that all the population is served within a standard distance,and nobody stands in line for a time longer than a given time--limit, or withmore than a predetermined number of other clients. We then formulateseveral maximal coverage models, with one or more servers per service center.A new heuristic is developed to solve the models and tested in a 30--nodesnetwork.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper illustrates the philosophy which forms the basis of calibrationexercises in general equilibrium macroeconomic models and the details of theprocedure, the advantages and the disadvantages of the approach, with particularreference to the issue of testing ``false'' economic models. We provide anoverview of the most recent simulation--based approaches to the testing problemand compare them to standard econometric methods used to test the fit of non--lineardynamic general equilibrium models. We illustrate how simulation--based techniques can be used to formally evaluate the fit of a calibrated modelto the data and obtain ideas on how to improve the model design using a standardproblem in the international real business cycle literature, i.e. whether amodel with complete financial markets and no restrictions to capital mobility is able to reproduce the second order properties of aggregate savingand aggregate investment in an open economy.