978 resultados para Diode array UV spectroscopy
Resumo:
We investigate the shot noise of nonequilibrium carriers injected into a ballistic conductor and interacting via long-range Coulomb forces. Coulomb interactions are shown to act as an energy analyzer of the profile of injected electrons by means of the fluctuations of the potential barrier at the emitter contact. We show that the details in the energy profile can be extracted from shot-noise measurements in the Coulomb interaction regime, but cannot be obtained from time-averaged quantities or shot-noise measurements in the absence of interactions.
Resumo:
A rapid and sensitive method is described for the determination of clofentezine residues in apple, papaya, mango and orange. The procedure is based on the extraction of the sample with a hexane:ethyl acetate mixture (1:1, v/v) and liquid chromatographic analysis using UV detection. Mean recoveries from 4 replicates of fortified fruit samples ranged from 81% to 96%, with coefficients of variation from 8.9% to 12.5%. The detection and quantification limits of the method were of 0.05 and 0.1 mg kg-1, respectively.
Resumo:
Spectrophotometry is one of the most widespread analytical techniques due to its simplicity, reliability, and low-cost instrumentation for both direct measurements and coupled to other techniques or processes such as chromatography, electrophoresis and flow analysis. However, the application is often limited by sensitivity. This article describes some advances that greatly improve the performance of spectrophotometric measurements, especially in order to increase sensitivity, including the employment of liquid-core waveguides and solid-phase spectrophotometry.
Resumo:
Eighteen circular blocks of resins cured either by a LED or a halogen lamp (20, 40 and 60 s), had their top (T) and bottom (B) surfaces studied using a FT-Raman spectrometer. Systematic changes in the intensity of the methacrylate C=C stretching mode at 1638 cm-1 as a function of exposure duration were observed. The calculated degree of conversion (DC) ranged from 45.0% (B) to 52.0% (T) and from 49.0% (B) to 55.0% (T) for the LED and halogen lamp, respectively. LED and halogen light produced similar DC values with 40 and 60 s of irradiation.
Resumo:
Fast atom bombardment mass spectroscopy has been used to study a large number of cationic phosphine-containing transition-metal-gold clusters, which ranged in mass from 1000 to 4000. Many of these clusters have been previously characterized and were examined in order to test the usefulness of the FABMS technique. Results showed that FABMS is excellent in giving the correct molecular formula and when combined with NMR, IR, and microanalysis gave a reliable characterization for cationic clusters¹. Recently FABMS has become one of the techniques employed as routine in cluster characterization2,3 and also is an effective tool for the structure analysis of large biomolecules4. Some results in the present work reinforce the importance of these data in the characterization of clusters in the absence of crystals with quality for X-ray analysis.
Resumo:
In this work we describe the processing of poly(styrene sulphonate) films (PSS) doped with neodymium (Nd). Optical density measurements in the UV-Vis-NIR region show the typical bands observed for neodymium chloride (NdCl3) in solution. In the case of films, the intensity ratio between the peaks at 800 nm (4I9/2 -> 4F5/2 + ²H7/2) and 580 nm (4I9/2 -> 4G5/2 + ²G7/2) is equal to 0.83. Infrared spectra present an enhancement in the absorption region of aromatic rings. Site selective luminescence spectroscopy shows that the incorporation of Nd introduces a hipsochromic shift and a line shape definition in UV luminescence compared to PSS film, decreasing the interaction between aromatic groups. In addition, the film exhibits an intense radiative transition at 1061 nm (4F3/2->4I11/2), comparable to the one present in crystalline materials doped with Nd.
Resumo:
This paper summarizes the result of a degradation test of two azo-reactive dyes (Reactive Blue 214, Reactive Red 243) under UV irradiation in the presence of H2O2. Five different doses of hydrogen peroxide (0 mM, 5 mM, 10 mM, 20 mM and 30 mM) at constant initial concentration of the substrate (100 mg/L) were used. The radiation source were three 15 W-lamps. Complete destruction of the color of the solutions was attained in 40-50 min of irradiation. UV/H2O2 proved capable of complete discoloration and degradation of the above azo reactive dyes.
Resumo:
The aim of this work was to study the influence of effluent organic matter (EfOM) on micropollutants removal by ozone and UV/H2O2. To perform the experiments, deionized water and municipal secondary effluents (SE) were artificially contaminated with atrazine (ATZ) and treated by the two proposed methods. ATZ concentration, COD and TOC were recorded along the reaction time and used to evaluate EfOM effect on the system efficiency. Results demonstrate that the presence of EfOM can significantly reduce the micropollutant removal rate due to competition of EfOM components to react with radicals and/or molecular ozone. The hydroxyl radical scavenging caused by EfOM was quantified as well as the contribution of molecular ozone and �OH radicals during the ozonation of SE. EfOM components promoted higher inhibition of ATZ oxidation by hydroxyl radicals than by molecular ozone.
Resumo:
Gravimetric and Bailey-Andrew methods are tedious and provide inflated results. Spectrofotometry is adequate for caffeine analysis but is lengthy. Gas chromatography also is applied to the caffeine analysis but derivatization is needed. High performance liquid chromatography with ultraviolet detection (HPLC-UV) and reversed phase is simple and rapid for xanthine multianalysis. In HPLC-UV-gel permeation, organic solvents are not used. HPLC-mass spectrometry provides an unequivocal structural identification of xanthines. Capillary electrophoresis is fast and the solvent consumption is smaller than in HPLC. Chemometric methods offer an effective means for chemical data handling in multivariate analysis. Infrared spectroscopy alone or associated with chemometries could predict the caffeine content in a very accurate form. Electroanalytical methods are considered of low cost and easy application in caffeine analysis.
Resumo:
A new procedure to find the limiting range of the photomultiplier linear response of a low-cost, digital oscilloscope-based time-resolved laser-induced luminescence spectrometer (TRLS), is presented. A systematic investigation on the instrument response function with different signal input terminations, and the relationship between the luminescence intensity reaching the photomultiplier and the measured decay time are described. These investigations establish that setting the maximum intensity of the luminescence signal below 0.3V guarantees, for signal input terminations equal or higher than 99.7 ohm, a linear photomultiplier response.
Resumo:
Large differences in reduced glutathione (GSH) levels have been found in different investigations, also in healthy people. GSH oxidation in vitro has been associated with sample acidification in the presence of oxihemoglobin. In this work, the influence of different acids on GSH determination utilizing HPLC with UV detection was evaluated. The results showed that metaphosphoric acid and sulfosalicylic acid were inadequate for analysis, because metaphosphoric acid showed to be inefficient for deproteinization and with sulfosalicylic acid loss of GSH was observed. Trichloroacetic acid did not effect GSH quantification, since the deproteinized form was immediately derivatized with 5, 5´-dithio-bis (2-nitrobenzoic) acid. Methods with TCA deproteinization presented linear results from 0.5 to 3.0 mM. The correlation coefficient between aqueous curves and GSH spiked RBC exceeded 0.99. Precision calculations showed CV lower than 10% and bias within ± 10% for concentrations of 0.5; 1.5 and 3.0 mM GSH. The recovery was higher than 94%. Moreover, GSH blood concentrations were independent of hemoglobin concentrations.
Resumo:
A thorough critical analysis of the theoretical relationships between the bond-angle dispersion in a-Si, Δθ, and the width of the transverse optical Raman peak, Γ, is presented. It is shown that the discrepancies between them are drastically reduced when unified definitions for Δθ and Γ are used. This reduced dispersion in the predicted values of Δθ together with the broad agreement with the scarce direct determinations of Δθ is then used to analyze the strain energy in partially relaxed pure a-Si. It is concluded that defect annihilation does not contribute appreciably to the reduction of the a-Si energy during structural relaxation. In contrast, it can account for half of the crystallization energy, which can be as low as 7 kJ/mol in defect-free a-Si
Resumo:
Tannery effluents are very dangerous for the environment since they contain large amounts of dangerous and biorecalcitrant contaminants (organic matter and Cr(VI)). This paper reports the efficiency of heterogeneous photocatalysis, based on the application of solar and artificial radiation, furnished by UV lamps, using TiO2 fixed on a flat plate, in the treatment of synthetic effluents. The results of COD and Cr(VI) demonstrate that the use of solar radiation is the most efficient way to perform the photocatalytic treatment of these effluents since a minimum removal of 62 and 61% was observed for Cr(VI) and organic matter, respectively.
Resumo:
This work presents a chemical study of human bones painted red located at the Morro dos Ossos site, Piauí State, Brazil. The pigment was studied using X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), complexation reactions with thiocyanate and UV-Vis absorption spectroscopy. The results confirmed the presence of ochre and that the pigment layer is essentially composed of a mixture of clay and hematite, α-Fe2O3.
Resumo:
This paper reports on the development of a simple and fast procedure for β-carotene extraction from carrots and its quantification by UV/Vis spectroscopy. Carotenoids extracted from carrots may also be used as alternative reagents for TLC (thin layer chromatography) detection of natural compounds with antioxidant properties, replacing the commercial p.a. grade β-carotene. Although this reagent had around 10% b-carotene, it proved to be as efficient for TLC analysis as the commercial p.a. grade β-carotene. This practice is a useful alternative for teaching undergraduate organic chemistry laboratory classes.