931 resultados para Differential equations, Nonlinear -- Numerical solutions -- Computer programs


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new scaling analysis has been performed for the unsteady natural convection boundary layer under a downward facing inclined plate with uniform heat flux. The development of the thermal or viscous boundary layers may be classified into three distinct stages including an early stage, a transitional stage and a steady stage, which can be clearly identified in the analytical as well as numerical results. Earlier scaling shows that the existing scaling laws of the boundary layer thickness, velocity and steady state time scales for the natural convection flow on a heated plate of uniform heat flux provide a very poor prediction of the Prandtl number dependency. However, those scalings performed very well with Rayleigh number and aspect ratio dependency. In this study, a modifed Prandtl number scaling has been developed using a triple-layer integral approach for Pr > 1. It is seen that in comparison to the direct numerical simulations, the new scaling performs considerably better than the previous scaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Jacobian-free variable-stepsize method is developed for the numerical integration of the large, stiff systems of differential equations encountered when simulating transport in heterogeneous porous media. Our method utilises the exponential Rosenbrock-Euler method, which is explicit in nature and requires a matrix-vector product involving the exponential of the Jacobian matrix at each step of the integration process. These products can be approximated using Krylov subspace methods, which permit a large integration stepsize to be utilised without having to precondition the iterations. This means that our method is truly "Jacobian-free" - the Jacobian need never be formed or factored during the simulation. We assess the performance of the new algorithm for simulating the drying of softwood. Numerical experiments conducted for both low and high temperature drying demonstrates that the new approach outperforms (in terms of accuracy and efficiency) existing simulation codes that utilise the backward Euler method via a preconditioned Newton-Krylov strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development and design of electric high power devices with electromagnetic computer-aided engineering (EM-CAE) software such as the Finite Element Method (FEM) and Boundary Element Method (BEM) has been widely adopted. This paper presents the analysis of a Fault Current Limiter (FCL), which acts as a high-voltage surge protector for power grids. A prototype FCL was built. The magnetic flux in the core and the resulting electromagnetic forces in the winding of the FCL were analyzed using both FEM and BEM. An experiment on the prototype was conducted in a laboratory. The data obtained from the experiment is compared to the numerical solutions to determine the suitability and accuracy of the two methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three-component reaction-diffusion system introduced in [C. P. Schenk et al., Phys. Rev. Lett., 78 (1997), pp. 3781–3784] has become a paradigm model in pattern formation. It exhibits a rich variety of dynamics of fronts, pulses, and spots. The front and pulse interactions range in type from weak, in which the localized structures interact only through their exponentially small tails, to strong interactions, in which they annihilate or collide and in which all components are far from equilibrium in the domains between the localized structures. Intermediate to these two extremes sits the semistrong interaction regime, in which the activator component of the front is near equilibrium in the intervals between adjacent fronts but both inhibitor components are far from equilibrium there, and hence their concentration profiles drive the front evolution. In this paper, we focus on dynamically evolving N-front solutions in the semistrong regime. The primary result is use of a renormalization group method to rigorously derive the system of N coupled ODEs that governs the positions of the fronts. The operators associated with the linearization about the N-front solutions have N small eigenvalues, and the N-front solutions may be decomposed into a component in the space spanned by the associated eigenfunctions and a component projected onto the complement of this space. This decomposition is carried out iteratively at a sequence of times. The former projections yield the ODEs for the front positions, while the latter projections are associated with remainders that we show stay small in a suitable norm during each iteration of the renormalization group method. Our results also help extend the application of the renormalization group method from the weak interaction regime for which it was initially developed to the semistrong interaction regime. The second set of results that we present is a detailed analysis of this system of ODEs, providing a classification of the possible front interactions in the cases of $N=1,2,3,4$, as well as how front solutions interact with the stationary pulse solutions studied earlier in [A. Doelman, P. van Heijster, and T. J. Kaper, J. Dynam. Differential Equations, 21 (2009), pp. 73–115; P. van Heijster, A. Doelman, and T. J. Kaper, Phys. D, 237 (2008), pp. 3335–3368]. Moreover, we present some results on the general case of N-front interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, we consider the Eldar model [3] from embryology in which a bone morphogenic protein, a short gastrulation protein, and their compound react and diffuse. We carry out a perturbation analysis in the limit of small diffusivity of the bone morphogenic protein. This analysis establishes conditions under which some elementary results of [3] are valid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here mixed convection boundary layer flow of a viscous fluid along a heated vertical semi-infinite plate is investigated in a non-absorbing medium. The relationship between convection and thermal radiation is established via boundary condition of second kind on the thermally radiating vertical surface. The governing boundary layer equations are transformed into dimensionless parabolic partial differential equations with the help of appropriate transformations and the resultant system is solved numerically by applying straightforward finite difference method along with Gaussian elimination technique. It is worthy to note that Prandlt number, Pr, is taken to be small (<< 1) which is appropriate for liquid metals. Moreover, the numerical results are demonstrated graphically by showing the effects of important physical parameters, namely, the modified Richardson number (or mixed convection parameter), Ri*, and surface radiation parameter, R, in terms of local skin friction and local Nusselt number coefficients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, natural convection boundary layer flow of thermally radiating fluid along a heated vertical wavy surface is analyzed. Here, the radiative component of heat flux emulates the surface temperature. Governing equations are reduced to dimensionless form, subject to the appropriate transformation. Resulting dimensionless equations are transformed to a set of parabolic partial differential equations by using primitive variable formulation, which are then integrated numerically via iterative finite difference scheme. Emphasis has been given to low Prandtl number fluid. The numerical results obtained for the physical parameters, such as, surface radiation parameter, R, and radiative length parameter, ξ, are discussed in terms of local skin friction and Nusselt number coefficients. Comprehensive interpretation of velocity distribution is also given in the form of streamlines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, general order conditions and a global convergence proof are given for stochastic Runge Kutta methods applied to stochastic ordinary differential equations ( SODEs) of Stratonovich type. This work generalizes the ideas of B-series as applied to deterministic ordinary differential equations (ODEs) to the stochastic case and allows a completely general formalism for constructing high order stochastic methods, either explicit or implicit. Some numerical results will be given to illustrate this theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three dimensional conjugate heat transfer simulation of a standard parabolic trough thermal collector receiver is performed numerically in order to visualize and analyze the surface thermal characteristics. The computational model is developed in Ansys Fluent environment based on some simplified assumptions. Three test conditions are selected from the existing literature to verify the numerical model directly, and reasonably good agreement between the model and the test results confirms the reliability of the simulation. Solar radiation flux profile around the tube is also approximated from the literature. An in house macro is written to read the input solar flux as a heat flux wall boundary condition for the tube wall. The numerical results show that there is an abrupt variation in the resultant heat flux along the circumference of the receiver. Consequently, the temperature varies throughout the tube surface. The lower half of the horizontal receiver enjoys the maximum solar flux, and therefore, experiences the maximum temperature rise compared to the upper part with almost leveled temperature. Reasonable attributions and suggestions are made on this particular type of conjugate thermal system. The knowledge that gained so far from this study will be used to further the analysis and to design an efficient concentrator photovoltaic collector in near future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Laminar two-dimensional natural convection boundary-layer flow of non-Newtonian fluids along an isothermal horizontal circular cylinder has been studied using a modified power-law viscosity model. In this model, there are no unrealistic limits of zero or infinite viscosity. Therefore, the boundary-layer equations can be solved numerically by using marching order implicit finite difference method with double sweep technique. Numerical results are presented for the case of shear-thinning as well as shear thickening fluids in terms of the fluid velocity and temperature distributions, shear stresses and rate of heat transfer in terms of the local skin-friction and local Nusselt number respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell invasion, characterised by moving fronts of cells, is an essential aspect of development, repair and disease. Typically, mathematical models of cell invasion are based on the Fisher–Kolmogorov equation. These traditional parabolic models can not be used to represent experimental measurements of individual cell velocities within the invading population since they imply that information propagates with infinite speed. To overcome this limitation we study combined cell motility and proliferation based on a velocity–jump process where information propagates with finite speed. The model treats the total population of cells as two interacting subpopulations: a subpopulation of left–moving cells, $L(x,t)$, and a subpopulation of right–moving cells, $R(x,t)$. This leads to a system of hyperbolic partial differential equations that includes a turning rate, $\Lambda \ge 0$, describing the rate at which individuals in the population change direction of movement. We present exact travelling wave solutions of the system of partial differential equations for the special case where $\Lambda = 0$ and in the limit that $\Lambda \to \infty$. For intermediate turning rates, $0 < \Lambda < \infty$, we analyse the travelling waves using the phase plane and we demonstrate a transition from smooth monotone travelling waves to smooth nonmonotone travelling waves as $\Lambda$ decreases through a critical value $\Lambda_{crit}$. We conclude by providing a qualitative comparison between the travelling wave solutions of our model and experimental observations of cell invasion. This comparison indicates that the small $\Lambda$ limit produces results that are consistent with experimental observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A quasi-maximum likelihood procedure for estimating the parameters of multi-dimensional diffusions is developed in which the transitional density is a multivariate Gaussian density with first and second moments approximating the true moments of the unknown density. For affine drift and diffusion functions, the moments are exactly those of the true transitional density and for nonlinear drift and diffusion functions the approximation is extremely good and is as effective as alternative methods based on likelihood approximations. The estimation procedure generalises to models with latent factors. A conditioning procedure is developed that allows parameter estimation in the absence of proxies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological systems involving proliferation, migration and death are observed across all scales. For example, they govern cellular processes such as wound-healing, as well as the population dynamics of groups of organisms. In this paper, we provide a simplified method for correcting mean-field approximations of volume-excluding birth-death-movement processes on a regular lattice. An initially uniform distribution of agents on the lattice may give rise to spatial heterogeneity, depending on the relative rates of proliferation, migration and death. Many frameworks chosen to model these systems neglect spatial correlations, which can lead to inaccurate predictions of their behaviour. For example, the logistic model is frequently chosen, which is the mean-field approximation in this case. This mean-field description can be corrected by including a system of ordinary differential equations for pair-wise correlations between lattice site occupancies at various lattice distances. In this work we discuss difficulties with this method and provide a simplication, in the form of a partial differential equation description for the evolution of pair-wise spatial correlations over time. We test our simplified model against the more complex corrected mean-field model, finding excellent agreement. We show how our model successfully predicts system behaviour in regions where the mean-field approximation shows large discrepancies. Additionally, we investigate regions of parameter space where migration is reduced relative to proliferation, which has not been examined in detail before, and our method is successful at correcting the deviations observed in the mean-field model in these parameter regimes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many software applications extend their functionality by dynamically loading executable components into their allocated address space. Such components, exemplified by browser plugins and other software add-ons, not only enable reusability, but also promote programming simplicity, as they reside in the same address space as their host application, supporting easy sharing of complex data structures and pointers. However, such components are also often of unknown provenance and quality and may be riddled with accidental bugs or, in some cases, deliberately malicious code. Statistics show that such component failures account for a high percentage of software crashes and vulnerabilities. Enabling isolation of such fine-grained components is therefore necessary to increase the stability, security and resilience of computer programs. This thesis addresses this issue by showing how host applications can create isolation domains for individual components, while preserving the benefits of a single address space, via a new architecture for software isolation called LibVM. Towards this end, we define a specification which outlines the functional requirements for LibVM, identify the conditions under which these functional requirements can be met, define an abstract Application Programming Interface (API) that encompasses the general problem of isolating shared libraries, thus separating policy from mechanism, and prove its practicality with two concrete implementations based on hardware virtualization and system call interpositioning, respectively. The results demonstrate that hardware isolation minimises the difficulties encountered with software based approaches, while also reducing the size of the trusted computing base, thus increasing confidence in the solution’s correctness. This thesis concludes that, not only is it feasible to create such isolation domains for individual components, but that it should also be a fundamental operating system supported abstraction, which would lead to more stable and secure applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerically investigation of free convection heat transfer in a differentially heated trapezoidal cavity filled with non-Newtonian Power-law fluid has been performed in this study. The left inclined surface is uniformly heated whereas the right inclined surface is maintained as uniformly cooled. The top and bottom surfaces are kept adiabatic with initially quiescent fluid inside the enclosure. Finite volume based commercial software FLUENT 14.5 is used to solve the governing equations. Dependency of various flow parameters of fluid flow and heat transfer is analyzed including Rayleigh number, Ra ranging from 10^5 to 10^7, Prandtl number, Pr of 100 to 10,000 and power index, n of 0.6 to 1.4. Outcomes have been reported in terms of isotherms, streamline, and local Nusselt number for various Ra, Pr, n and inclined angles. Grid sensitivity analysis is performed and numerically obtained results have been compared with those results available in the literature and found good agreement.