987 resultados para Differential calculus.
Resumo:
Estudamos problemas do cálculo das variações e controlo óptimo no contexto das escalas temporais. Especificamente, obtemos condições necessárias de optimalidade do tipo de Euler–Lagrange tanto para lagrangianos dependendo de derivadas delta de ordem superior como para problemas isoperimétricos. Desenvolvemos também alguns métodos directos que permitem resolver determinadas classes de problemas variacionais através de desigualdades em escalas temporais. No último capítulo apresentamos operadores de diferença fraccionários e propomos um novo cálculo das variações fraccionário em tempo discreto. Obtemos as correspondentes condições necessárias de Euler– Lagrange e Legendre, ilustrando depois a teoria com alguns exemplos.
Resumo:
Introduzimos um cálculo das variações fraccional nas escalas temporais ℤ e (hℤ)!. Estabelecemos a primeira e a segunda condição necessária de optimalidade. São dados alguns exemplos numéricos que ilustram o uso quer da nova condição de Euler–Lagrange quer da nova condição do tipo de Legendre. Introduzimos também novas definições de derivada fraccional e de integral fraccional numa escala temporal com recurso à transformada inversa generalizada de Laplace.
Resumo:
Generalizamos o cálculo Hahn variacional para problemas do cálculo das variações que envolvem derivadas de ordem superior. Estudamos o cálculo quântico simétrico, nomeadamente o cálculo quântico alpha,beta-simétrico, q-simétrico e Hahn-simétrico. Introduzimos o cálculo quântico simétrico variacional e deduzimos equações do tipo Euler-Lagrange para o cálculo q-simétrico e Hahn simétrico. Definimos a derivada simétrica em escalas temporais e deduzimos algumas das suas propriedades. Finalmente, introduzimos e estudamos o integral diamond que generaliza o integral diamond-alpha das escalas temporais.
Resumo:
The fractional calculus of variations and fractional optimal control are generalizations of the corresponding classical theories, that allow problem modeling and formulations with arbitrary order derivatives and integrals. Because of the lack of analytic methods to solve such fractional problems, numerical techniques are developed. Here, we mainly investigate the approximation of fractional operators by means of series of integer-order derivatives and generalized finite differences. We give upper bounds for the error of proposed approximations and study their efficiency. Direct and indirect methods in solving fractional variational problems are studied in detail. Furthermore, optimality conditions are discussed for different types of unconstrained and constrained variational problems and for fractional optimal control problems. The introduced numerical methods are employed to solve some illustrative examples.
Resumo:
Epithelial tissues are essential during morphogenesis and organogenesis. During development, epithelial tissues undergo several different remodeling processes, from cell intercalation to cell change shape. An epithelial cell has a highly polarized structure, which is important to maintain tissue integrity. The mechanisms that regulate and maintain apicobasal polarity and epithelial integrity are mostly conserved among all species and in different tissues within the same organism. aPKC-PAR complex localizes in the apical domain of polarized cells, and its function is essential for apicobasal polarization and epithelial integrity. In this work we characterized two novel alleles of aPKC: a temperature sensitive allele (aPKCTS), which has a point mutation on a kinase domain, and another allele with a point mutation on a highly conserved amino acid within the PB1 domain of aPKC (aPKCPB1). Analysis of the aPKCTS mutant phenotypes, lead us to propose that during development different epithelial tissues have differential requirements of aPKC activity. More specifically, our work suggests de novo formation of adherens junctions (AJs) is particularly sensitive to sub-optimal levels of apkc activity. Analysis of the aPKCPB1 allele, suggests that aPKC is likely to have an apical structural function mostly independent of its kinase activity. Altogether our work suggests that although loss of aPKC function is associated to similar epithelial phenotypes (e.g., loss of apicobasal polarization and epithelial integrity), the requirements of aPKC activity within these tissues are nevertheless likely to vary.
Resumo:
The fact that the adult brain is able to produce new neurons or glial cells from neural stem cells (NSC) became one of the most interesting and challenging fields of research in neuroscience. Endogenous adult neurogenesis occurs in two main regions of the brain: the subventricular zone (SVZ) of the lateral ventricles and the subgranular zone (SGZ) in the dentate gyrus. Brain injury may be accompanied by increased neurogenesis, although neuroinflammation promotes the activation of microglial cells that can be detrimental to the neurogenic process. Nitric oxide (NO) is one of the factors released by microglia that can be proneurogenic. The mechanism by which NO promotes the proliferation of NSCs has been intensively studied. However, little is known about the role of NO in migration, survival and differentiation of the newborn cells. The aim of this work was to investigate the role of NO from inflammatory origin in proliferation, migration, differentiation and survival of NSCs from the dentate gyrus in a mouse model of status epilepticus. We also assessed neuroinflammation in the same injury model. Our work showed that NO increased proliferation of the early-born cells after seizures, but is detrimental for their survival. NO also increased migration of neuroblasts. Moreover, NO was important to maintain long-term neuroinflammation. Taken together, these results show that NO may be a good target to promote proliferation and migration of NSCs following seizures, but compromises survival of early-born cells.
Resumo:
Thesis (Ph.D.)--University of Washington, 2014
Resumo:
Fractional calculus generalizes integer order derivatives and integrals. During the last half century a considerable progress took place in this scientific area. This paper addresses the evolution and establishes an assertive measure of the research development.
Resumo:
The trajectory planning of redundant robots through the pseudoinverse control leads to undesirable drift in the joint space. This paper presents a new technique to solve the inverse kinematics problem of redundant manipulators, which uses a fractional differential of order α to control the joint positions. Two performance measures are defined to examine the strength and weakness of the proposed method. The positional error index measures the precision of the manipulator's end-effector at the target position. The repeatability performance index is adopted to evaluate if the joint positions are repetitive when the manipulator execute repetitive trajectories in the operational workspace. Redundant and hyper-redundant planar manipulators reveal that it is possible to choose in a large range of possible values of α in order to get repetitive trajectories in the joint space.
Resumo:
This survey intends to report some of the major documents and events in the area of fractional calculus that took place since 1974 up to the present date.
Resumo:
A genetic algorithm used to design radio-frequency binary-weighted differential switched capacitor arrays (RFDSCAs) is presented in this article. The algorithm provides a set of circuits all having the same maximum performance. This article also describes the design, implementation, and measurements results of a 0.25 lm BiCMOS 3-bit RFDSCA. The experimental results show that the circuit presents the expected performance up to 40 GHz. The similarity between the evolutionary solutions, circuit simulations, and measured results indicates that the genetic synthesis method is a very useful tool for designing optimum performance RFDSCAs.
Resumo:
The paper presents a RFDSCA automated synthesis procedure. This algorithm determines several RFDSCA circuits from the top-level system specifications all with the same maximum performance. The genetic synthesis tool optimizes a fitness function proportional to the RFDSCA quality factor and uses the epsiv-concept and maximin sorting scheme to achieve a set of solutions well distributed along a non-dominated front. To confirm the results of the algorithm, three RFDSCAs were simulated in SpectreRF and one of them was implemented and tested. The design used a 0.25 mum BiCMOS process. All the results (synthesized, simulated and measured) are very close, which indicate that the genetic synthesis method is a very useful tool to design optimum performance RFDSCAs.
Resumo:
In the last decades fractional calculus (FC) became an area of intensive research and development. This paper goes back and recalls important pioneers that started to apply FC to scientific and engineering problems during the nineteenth and twentieth centuries. Those we present are, in alphabetical order: Niels Abel, Kenneth and Robert Cole, Andrew Gemant, Andrey N. Gerasimov, Oliver Heaviside, Paul Lévy, Rashid Sh. Nigmatullin, Yuri N. Rabotnov, George Scott Blair.
Resumo:
While fractional calculus (FC) is as old as integer calculus, its application has been mainly restricted to mathematics. However, many real systems are better described using FC equations than with integer models. FC is a suitable tool for describing systems characterised by their fractal nature, long-term memory and chaotic behaviour. It is a promising methodology for failure analysis and modelling, since the behaviour of a failing system depends on factors that increase the model’s complexity. This paper explores the proficiency of FC in modelling complex behaviour by tuning only a few parameters. This work proposes a novel two-step strategy for diagnosis, first modelling common failure conditions and, second, by comparing these models with real machine signals and using the difference to feed a computational classifier. Our proposal is validated using an electrical motor coupled with a mechanical gear reducer.
Resumo:
This paper applies Pseudo Phase Plane (PPP) and Fractional Calculus (FC) mathematical tools for modeling world economies. A challenging global rivalry among the largest international economies began in the early 1970s, when the post-war prosperity declined. It went on, up to now. If some worrying threatens may exist actually in terms of possible ambitious military aggression, invasion, or hegemony, countries’ PPP relative positions can tell something on the current global peaceful equilibrium. A global political downturn of the USA on global hegemony in favor of Asian partners is possible, but can still be not accomplished in the next decades. If the 1973 oil chock has represented the beginning of a long-run recession, the PPP analysis of the last four decades (1972–2012) does not conclude for other partners’ global dominance (Russian, Brazil, Japan, and Germany) in reaching high degrees of similarity with the most developed world countries. The synergies of the proposed mathematical tools lead to a better understanding of the dynamics underlying world economies and point towards the estimation of future states based on the memory of each time series.