905 resultados para Dielectric coatings


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Chemistry

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermally expandable particles (TEPs) were developed by Dow Chemical Co in the early 1970´s [1] and were further developed by others [2, 3]. They are particles made up of a thermoplastic shell filled with liquid hydrocarbon. On heating them, two transformations will occur. One is the softening of shell material and the other is the gasification of the hydrocarbon liquid inside it. As a consequence, the shell will expand as the gas inside it will push the softened shell from inside out causing it to grow in size [4]. When fully expanded, the growth in volume of the particle can be from 50 to 100 times [3]. Owing to this unique behaviour, TEPs are used by the industry in a wide variety of applications mainly for weight reduction and appearance improvement for thermoplastics, inks, and coatings. In adhesive bonding, TEPs have been used for recycling purposes. Moreover, TEPs might be used to modify structural adhesives for other new purposes, such as: to increase the joint strength by creating an adhesive functionally modified along the overlap of the joint by gradual heating and/or to heal the adhesive in case of damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transformers may be classified according to dielectric insulation material as follows: • Oil-filled transformers • Dry type transformers

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Mecânica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Bioengenharia (MIT)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para a obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertation to obtain a Master degree in Biotechnology

Relevância:

10.00% 10.00%

Publicador:

Resumo:

3rd Historic Mortars Conference, 11-14 September 2013, Glasgow, Scotland

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Química Sustentável

Relevância:

10.00% 10.00%

Publicador:

Resumo:

XIII DBMC – 12th International Conference on Durability of Building Materials and Components,2-5 September 2014, Universidade de São Paulo, São Paulo, Brazil

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to their exposure to environmental conditions, outer coatings composed by render and painting system are usually the first construction elements to deteriorate and require intervention. A correct conservation and rehabilitation of these materials is fundamental once they provide protection to other façade materials. It is known that old mortar renders were essentially air lime based mortars. To maintain the integrity of the whole wall-render elements, the image of the building and to avoid accelerated degradation, conservation and rehabilitation must be implemented with compatible mortars. As that, lime based mortars would be preferable. It was also common, in ancient renders, the incorporation of ceramic residues, which is, nowadays, an abundant material, especially in Central Region of Portugal. The reuse of these materials has great relevance once their landfilling causes serious environmental issues. In an attempt to combine the environmental and technical advantages of the use of ceramic waste in mortars’ production for rehabilitation purposes, a research has been developed at the University of Coimbra, in cooperation with Nova University of Lisbon, on the long term behaviour of air lime mortars with ceramic residues. In this paper the most significant up to one year results of an experimental campaign with air lime mortars with 1:3 and 1:2 volumetric proportions and ceramic residues are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis reports the work performed in the optimization of deposition parameters of Multi – Walled Carbon Nanotubes (MWCNT) targeting the development of a Field Effect Transistors (FET) on paper substrates. The CNTs were dispersed in a water solution with sodium dodecyl sulphate (SDS) through ultrasonication, ultrasonic bath and a centrifugation to remove the supernatant and have a homogeneous solution. Several deposition tests were performed using different types of CNTs, dis-persants, papers substrates and deposition techniques, such as spray coating and inkjet printing. The characterization of CNTs was made by Scanning Electron Microscopy (SEM) and Hall Effect. The most suitable CNT coatings able to be used as semiconductor in FETs were deposited by spray coat-ing on a paper substrate with hydrophilic nanoporous surface (FS2) at 100 ºC, 4 bar, 10 cm height, 5 second of deposition time and 90 seconds of drying between steps (4 layers of CNTs were deposited). Planar electrolyte gated FETs were produced with these layers using gold-nickel gate, source and drain electrodes. Despite the small current modulation (Ion/Ioff ratio of 1.8) one of these devices have p-type conduction with a field effect mobility of 1.07 cm2/V.s.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is one of the first reports of digital microfluidics on paper and the first in which the chip’s circuit was screen printed unto the paper. The use of the screen printing technique, being a low cost and fast method for electrodes deposition, makes the all chip processing much more aligned with the low cost choice of paper as a substrate. Functioning chips were developed that were capable of working at as low as 50 V, performing all the digital microfluidics operations: movement, dispensing, merging and splitting of the droplets. Silver ink electrodes were screen printed unto paper substrates, covered by Parylene-C (through vapor deposition) as dielectric and Teflon AF 1600 (through spin coating) as hydrophobic layer. The morphology of different paper substrates, silver inks (with different annealing conditions) and Parylene deposition conditions were studied by optical microscopy, AFM, SEM and 3D profilometry. Resolution tests for the printing process and electrical characterization of the silver electrodes were also made. As a showcase of the applications potential of these chips as a biosensing device, a colorimetric peroxidase detection test was successfully done on chip, using 200 nL to 350 nL droplets dispensed from 1 μL drops.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growing demand for materials and devices with new functionalities led to the increased inter-est in the field of nanomaterials and nanotechnologies. Nanoparticles, not only present a reduced size as well as high reactivity, which allows the development of electronic and electrochemical devices with exclusive properties, when compared with thin films. This dissertation aims to explore the development of several nanostructured metal oxides by sol-vothermal synthesis and its application in different electrochemical devices. Within this broad theme, this study has a specific number of objectives: a) research of the influence of the synthesis parameters to the structure and morphology of the nanoparticles; b) improvement of the perfor-mance of the electrochromic devices with the application of the nanoparticles as electrode; c) application of the nanoparticles as probes to sensing devices; and d) production of solution-pro-cessed transistors with a nanostructured metal oxide semiconductor. Regarding the results, several conclusions can be exposed. Solvothermal synthesis shows to be a very versatile method to control the growth and morphology of the nanoparticles. The electrochromic device performance is influenced by the different structures and morphologies of WO3 nanoparticles, mainly due to the surface area and conductivity of the materials. The dep-osition of the electrochromic layer by inkjet printing allows the patterning of the electrodes without wasting material and without any additional steps. Nanostructured WO3 probes were produced by electrodeposition and drop casting and applied as pH sensor and biosensor, respectively. The good performance and sensitivity of the devices is explained by the high number of electrochemical reactions occurring at the surface of the na-noparticles. GIZO nanoparticles were deposited by spin coating and used in electrolyte-gated transistors, which promotes a good interface between the semiconductor and the dielectric. The produced transistors work at low potential and with improved ON-OFF current ratio, up to 6 orders of mag-nitude. To summarize, the low temperatures used in the production of the devices are compatible with flexible substrates and additionally, the low cost of the techniques involved can be adapted for disposable devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work reports the development of field-effect transistors (FETs), whose channel is based on zinc oxide (ZnO) nanoparticles (NPs). Using screen-printing as the primary deposition technique, different inks were developed, where the semiconducting ink is based on a ZnO NPs dispersion in ethyl cellulose (EC). These inks were used to print electrolyte-gated transistors (EGTs) in a staggered-top gate structure on glass substrates, using a lithium-based polymeric electrolyte. In another approach, FETs with a staggered-bottom gate structure on paper were developed using a sol-gel method to functionalize the paper’s surface with ZnO NPs, using zinc acetate dihydrate (ZnC4H6O4·2H2O) and sodium hydroxide (NaOH) as precursors. In this case, the paper itself was used as dielectric. The various layers of the two devices were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Infrared spectroscopy (FTIR), thermogravimetric and differential scanning calorimetric analyses (TG-DSC). Electrochemical impedance spectroscopy (EIS) was used in order to evaluate the electric double-layer (EDL) formation, in the case of the EGTs. The ZnO NPs EGTs present electrical modulation for annealing temperatures equal or superior to 300 ºC and in terms of electrical properties they showed On/Off ratios in the order of 103, saturation mobilities (μSat) of 1.49x10-1 cm2(Vs)-1 and transconductance (gm) of 10-5 S. On the other hand, the ZnO NPs FETs on paper exhibited On/Off ratios in the order of 102, μSat of 4.83x10- 3 cm2(Vs)-1and gm around 10-8 S.